SEMI E4标准,半导体设备串口通信协议SECS-I。标准定义了半导体设备HOST端口与上层系统如EAP的通迅标准。该标准未定义数据格式,数据格式由E5标准定义。
2021-09-18 22:24:51 390KB Semi SECS
1
超级GBM | 我们正在招聘! 亲爱的朋友们,我们正在北京为热衷于 AutoML/NAS 的专业人士和实习生开设几个宝贵的职位,请将您的简历/简历发送至 。 (申请截止日期:待定。) 什么是 HyperGBM HyperGBM是一个支持全流水线AutoML的库,完全涵盖了数据清洗、预处理、特征生成和选择、模型选择和超参数优化的端到端阶段,是真正的表格数据AutoML工具。 概述 与大多数专注于解决机器学习算法超参数优化问题的 AutoML 方法不同,HyperGBM 可以将从数据清理到算法选择的整个过程放在一个搜索空间中进行优化。 端到端管道优化更像是一个顺序决策过程,因此 HyperGBM 使用强化学习、蒙特卡洛树搜索、进化算法结合元学习器来有效解决此类问题。 顾名思义,HyperGBM中使用的ML算法都是GBM模型,更准确的说是梯度提升树模型,目前包括XGBoost、Light
2021-09-13 17:55:27 2.09MB tabular-data xgboost semi-supervised-learning gbm
1
对抗学习的半监督语义分割 此回购是以下论文的pytorch实现: ,,刘彦婷,, 英国机器视觉会议(BMVC)的会议记录,2018年。 联系人︰洪志智(whung8 at ucmerced dot edu) 该代码是从pytorch DeepLab实现( )大量借用的。 基线模型是DeepLabv2-Resnet101,没有进行多尺度培训和CRF后处理,在VOC2012验证集上的平均IOU为73.6% 。 如果发现对您的研究有用,请引用我们的论文。 @inproceedings{Hung_semiseg_2018, author = {W.-C. Hung and Y.-H. Tsai and Y.-T. Liou and Y.-Y. Lin and M.-H. Yang}, booktitle = {Proceedings of the British Machine
1
半导体行业标准之一,定义了设备各种状态和生产情况,以及如何分析设备操作时间维修时间测量数据通信数据等标准
2021-09-10 08:15:11 422KB 半导体 标准
1
半监督学习以改善肺癌的检测 使用生成模型和半监督学习促进肺癌检测 用于训练的数据集 LUNA16数据集( ) Kaggle数据科学碗2017( ) 建筑学 结果 结节检测器结果 发电机结果 分类器结果 方法 准确性 监督学习 64% 半监督学习 87.3% 资源 Kaggle数据科学碗2017内核 Luna2016-肺结节检测 Tensorflow中的半监督学习GAN [链接] DSB2017 [链接] Keras-GAN [链接] 使用很少的数据构建强大的图像分类模型[link] 贡献者: Dhamodhran( @ svella9 ) 悉达思R科蒂( siddharthkoti ) 维杰·蒙达拉吉( Vijay-Mundaragi )
1
医学图像分割的半监督学习。 近来,半监督图像分割已成为医学图像计算中的热门话题,不幸的是,由于隐私策略等原因,只有少数开源代码和数据集。为了便于评估和公平比较,我们正在尝试建立一个半监督医学图像分割基准,以促进医学影像计算社区中的半监督学习研究。如果您有兴趣,可以随时将实现或想法推送到此存储库。 该项目最初是为我们以前的工作开发的,如果您发现对您的研究有用,请考虑引用以下内容: @article{luo2020urpc, title={Efficient Semi-supervised Gross Target Volume of Nasopharyngeal Carcinoma Segmentation via Uncertainty Rectified Pyramid Consistency}, author={Luo, Xiangde and Liao, Wen
2021-09-07 15:10:50 114KB semi-supervised-learning Python
1
双任务一致性 本文的代码:通过双任务一致性进行半监督医学图像分割( ) @article{luo2021semi, title={Semi-Supervised Medical Image Segmentation through Dual-task Consistency}, author={Luo, Xiangde and Chen, Jieneng and Song, Tao and Wang, Guotai}, journal={AAAI Conference on Artificial Intelligence}, year={2021} } 要求 一些重要的必需软件包包括: 版本> = 0.4.1。 TensorBoardX 的Python == 3.6 一些基本的python软件包,例如Numpy,Scikit-image,SimpleITK,S
2021-09-07 14:29:05 100.02MB semi-supervised-learning Python
1
具有交叉一致性训练 (CCT) 的半监督语义分割 , 本 repo 包含 CVPR 2020 论文的官方实现:Semi-Supervised Semantic Segmentation with Cross-Consistecy Training,它采用了传统的半监督学习的一致性训练框架进行语义分割,扩展到弱监督学习和在多个域。 强调 (1) 语义分割的一致性训练。 我们观察到,对于语义分割,由于任务的密集性,集群假设更容易在隐藏表示而不是输入上强制执行。 (2) 交叉培训。 我们为半监督语义分割提出了 CCT(Cross-Consistency Training),我们在其中定义了许多新的扰动,并展示了对编码器输出而不是输入执行一致性的有效性。 (3) 使用来自多个域的弱标签和像素级标签。 所提出的方法非常简单灵活,并且可以很容易地扩展到使用来自多个域的图像级标签和像素级标签。 要求
1
SEMI Standards 2006半導體標準規範 ,所有半導體公司都必需尊守此規範 About the SEMI Standards Program Why standards? The SEMI International Standards Program is one of the key services offered by Semiconductor Equipment and Materials International (SEMI) for the benefit of the worldwide semiconductor, photovoltaic (PV), LED, MEMS and flat panel display (FPD) industries. Standards offer a way to meet the challenges of increasing productivity while enabling business opportunities around the globe. The program, started over 40 years ago in North America, was expanded in 1985 to include programs in Europe and Japan, and now also has technical committees in China, Korea and Taiwan. In 1997, the Program was expanded to cover other areas with activity in these industries among suppliers and users. The program operates as a neutral forum for the exchange of information among suppliers and users resulting in the production of timely and technically accurate specifications and other standards of economic importance to the industry. It is a vehicle for networking, partnering, and professional growth. Over 5,000 technologists worldwide, representing both device manufacturers and equipment and materials suppliers, participate in the program. These individuals work toward resolving a variety of process and product related issues in both the front and back-end areas in semiconductor, photovoltaic, and flat panel display manufacturing.
2021-08-30 14:31:07 138.28MB semi
1
SEMI:07年半导体制造设备销售额为409亿美元.pdf
2021-08-30 09:06:38 58KB 半导体 导体技术 导体研究 参考文献