STM32H750 Pro开发板是一款基于意法半导体(STMicroelectronics)高性能的STM32H7系列微控制器的开发工具,适用于高级嵌入式应用。该开发板是学习和开发STM32H750VXX芯片的理想平台,提供丰富的外设接口和强大的计算能力。本教程配套代码针对STM32H750V版本的芯片,旨在帮助开发者快速理解和掌握该芯片的特性和功能。 STM32H750V系列是STM32家族的一员,采用Arm Cortex-M7内核,运行频率高达480MHz,具有出色的处理性能。它集成了浮点单元(FPU),可以高效执行浮点运算,非常适合涉及复杂算法和实时控制的应用。此外,该芯片还拥有大容量的闪存和SRAM,以及一系列先进的外设,如CAN-FD、以太网、USB OTG、多个串行通信接口等。 压缩包中的“ebf_stm32h750_pro_code_v-master”可能包含以下关键组件: 1. **固件库**:STM32CubeH7固件库提供了HAL(Hardware Abstraction Layer)和LL(Low-Layer)驱动,这些驱动使开发者能够以更高级别的抽象来编写代码,简化了对硬件资源的访问。 2. **示例代码**:各种示例项目展示如何初始化系统、配置时钟、使用特定外设以及执行基本操作,如LED控制、串口通信、定时器中断等。 3. **开发环境**:可能包括Makefile或IDE配置文件,用于在Eclipse、Keil MDK或其他开发环境中构建和调试项目。 4. **文档**:教程文档可能详细解释了如何使用代码,如何配置开发环境,以及每个示例的功能和工作原理。 5. **库文件**:可能包含了第三方库,如FreeRTOS、lwIP等,为实时操作系统和网络功能提供支持。 6. **烧录工具和脚本**:用于将编译后的固件烧录到开发板的工具和指令。 通过学习这个教程和配套代码,开发者可以深入了解STM32H750V芯片的性能特点,如: - **高性能计算**:了解如何利用Cortex-M7内核和FPU进行高速运算。 - **内存管理**:掌握如何有效地分配和使用片上存储资源。 - **外设接口**:熟悉各种外设的初始化和操作,如GPIO、I2C、SPI、UART等。 - **实时操作系统**:如果包含FreeRTOS,可以学习如何在STM32H750上实现多任务调度。 - **网络功能**:如使用以太网或USB接口进行数据传输。 - **功耗管理**:学习如何优化功耗,实现低功耗应用。 这个教程配套代码提供了全面的学习材料,让开发者能逐步掌握STM32H750V芯片的开发技能,从而充分利用其强大性能进行创新设计。在实践中不断探索,可以提升开发者在前沿技术领域的专业能力。
2025-03-28 09:03:54 421.79MB stm32 前沿技术 芯片开发
1
机器学习模型案例与SHAP解释性分析:涵盖类别与数值预测,CatBoost、XGBoost等六大模型深度解析及SHAP分析比较,shap分析代码案例,多个机器学习模型+shap解释性分析的案例,做好的多个模型和完整的shap分析拿去直接运行,含模型之间的比较评估。 类别预测和数值预测的案例代码都有,类别预测用到的6个模型是(catboost、xgboost、knn、logistic、bayes,svc),数值预测用到的6个模型是(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn),机器学习模型; SHAP解释性分析; 多个模型比较评估; 类别预测模型(catboost、xgboost、knn、logistic、bayes、svc); 数值预测模型(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn); 完整shap分析代码案例; 模型之间比较评估。,"多模型SHAP解释性分析案例集:类别预测与数值预测的全面比较评估"
2025-03-27 23:28:10 47KB ajax
1
在IT领域,数据结构是计算机科学的基础,它研究如何有效地组织和存储数据,以便于算法的执行和系统性能的优化。二叉树作为数据结构的一种,是计算机科学中广泛使用的一种树形数据结构,它的每个节点最多有两个子节点,通常分为左子节点和右子节点。本次数据结构实验涉及的是二叉树的三种遍历方法,它们分别是前序遍历、中序遍历和后序遍历。接下来,我们将详细讨论这三种遍历方式及其在实际编程中的应用。 1. 前序遍历(根-左-右) 前序遍历首先访问根节点,然后递归地对左子树进行前序遍历,最后对右子树进行前序遍历。这种遍历方式常用于创建树的副本或打印树的结构。在代码实现时,通常采用递归方法,也可以用栈来非递归实现。 2. 中序遍历(左-根-右) 中序遍历在访问根节点之前先访问左子树,然后访问根节点,最后访问右子树。对于二叉搜索树,中序遍历可以得到有序序列,可用于排序或查找操作。同样,中序遍历也可以用递归或非递归(借助栈)的方式实现。 3. 后序遍历(左-右-根) 后序遍历首先访问左子树,然后访问右子树,最后访问根节点。这种遍历方式常用于计算节点的值,如计算树的面积或深度。后序遍历的递归实现较为简单,但非递归实现相对复杂,通常需要用到两个辅助栈。 在进行这些遍历时,我们需要注意以下几点: - 递归法:直观简洁,但会占用递归栈空间,对于深树可能导致栈溢出。 - 非递归法(迭代法):利用栈或队列来模拟递归过程,空间效率较高,但实现起来较为复杂,需要理解清楚遍历顺序。 在数据结构实验中,学生通常会被要求实现这三种遍历方法,并通过测试用例验证其正确性。在提供的"数据结构实验代码二叉树的三种遍历.rar"文件中,应包含实现这些遍历的源代码,可能用C++、Java、Python等编程语言编写。学生可以通过阅读和调试代码,深入理解二叉树遍历的概念和实现细节,同时提高编程能力。 掌握二叉树的遍历方法对于理解和解决各种算法问题至关重要,它们不仅在数据结构课程中占有重要地位,也是面试和工作中常见的问题。通过实践和理解这些代码,可以帮助我们更好地运用这些知识到实际项目中。
2025-03-27 23:22:15 354KB 数据结构实验代码
1
二叉树是一种重要的数据结构,它由节点组成,每个节点最多有两个子节点,通常称为左子节点和右子节点。二叉树的概念在计算机科学中广泛应用于搜索、排序、文件系统等领域。本主题将深入探讨如何用源代码实现二叉树的建立、先序、中序、后序遍历,并讨论递归与非递归两种遍历方法。 我们要理解二叉树的基本操作。在C语言中,我们可以创建一个结构体来表示二叉树的节点,包含两个指针(left和right)分别指向左子节点和右子节点,以及一个用于存储数据的字段(如int data)。例如: ```c typedef struct Node { int data; struct Node* left; struct Node* right; } Node; ``` 接下来,我们将讨论如何构建二叉树。二叉树的构建通常涉及插入新节点。假设我们有一个函数`insertNode(Node** root, int value)`,该函数接受根节点的指针和要插入的值。如果根节点为空,我们就创建一个新的节点作为根;否则,我们根据值的大小决定将其插入左子树还是右子树。 对于遍历,有三种主要的方式:先序遍历、中序遍历和后序遍历。 1. **先序遍历**:访问根节点 -> 遍历左子树 -> 遍历右子树。递归实现如下: ```c void preOrderTraversal(Node* node) { if (node == NULL) return; printf("%d ", node->data); preOrderTraversal(node->left); preOrderTraversal(node->right); } ``` 非递归实现可以使用栈来辅助完成: ```c void preOrderTraversalNonRecursive(Node* node) { stack s; while (node != NULL || !s.empty()) { while (node != NULL) { printf("%d ", node->data); s.push(node); node = node->left; } if (!s.empty()) { node = s.top(); s.pop(); node = node->right; } } } ``` 2. **中序遍历**:遍历左子树 -> 访问根节点 -> 遍历右子树。递归实现: ```c void inOrderTraversal(Node* node) { if (node == NULL) return; inOrderTraversal(node->left); printf("%d ", node->data); inOrderTraversal(node->right); } ``` 非递归实现同样使用栈: ```c void inOrderTraversalNonRecursive(Node* node) { stack s; Node* curr = node; while (curr != NULL || !s.empty()) { while (curr != NULL) { s.push(curr); curr = curr->left; } if (!s.empty()) { curr = s.top(); s.pop(); printf("%d ", curr->data); curr = curr->right; } } } ``` 3. **后序遍历**:遍历左子树 -> 遍历右子树 -> 访问根节点。递归实现需要借助额外的栈或队列,这里仅展示递归实现: ```c void postOrderTraversal(Node* node) { if (node == NULL) return; postOrderTraversal(node->left); postOrderTraversal(node->right); printf("%d ", node->data); } ``` 非递归实现较为复杂,涉及到访问节点时的标记机制。 在`tree_01.c`文件中,很可能包含了这些功能的实现。通过阅读和理解这段代码,你可以更深入地了解二叉树的构造和遍历。对于二叉树的学习,不仅限于理解和编写代码,还需要理解其背后的逻辑和应用,这有助于提升你在算法和数据结构方面的技能。
2025-03-27 23:12:31 817KB 二叉树,递归遍历,非递归遍历
1
引导选择 bootstrap-select插件,可搜索的下拉框,对源代码做了一些修改,从而可以轻松获取所选择的值
2025-03-27 23:11:50 139KB 系统开源
1
图片和视频特质OpenCV 4 zh-cn Python(Windows,Linux,Raspberry) 内容代码示例,示例 ,Laurent Berger等文件03/01/2020辅助版本 。 硅CES exemples VOUSintéressent等阙VOUS n'avez PASacheté乐Livre的,知性VOUS invitons勒。 水果和果蔬的安全性要得到保护。
2025-03-27 21:43:10 97KB 系统开源
1
内容概要:本文介绍了一种利用DeeplabV3+模型进行视杯与视盘分割的方法,目的是为了辅助青光眼的早期诊断。主要技术包括数据预处理、使用ResNet18改造的DeeplabV3+模型、超参数调优、可视化结果评估及简单的GUI设计。通过这一系列流程,能够有效提升模型的准确性和实用性。 适合人群:适用于医学影像研究人员、深度学习爱好者和技术开发者,尤其关注医疗AI应用领域的人士。 使用场景及目标:该项目可以应用于临床眼科诊疗系统中,帮助医生快速高效地识别出视网膜图像中的关键结构;对于科研工作者而言,该模型还可以作为研究基线模型进一步探索新的改进方法。
2025-03-27 20:59:16 33KB DeeplabV3+ 医学影像处理 PyTorch
1
在Windows Forms开发中,ListBox控件是常用的组件之一,用于展示列表数据。然而,标准的ListBox控件功能相对有限,不支持一些高级效果,如项闪烁、项变色以及通过代码来控制滚动条。本教程将详细介绍如何通过扩展ListBox控件来实现这些增强功能。 我们创建一个自定义的ListBox类,继承自System.Windows.Forms.ListBox,以便添加新的特性。这个自定义类可以命名为`ListColorfulBox`,与提供的压缩包文件名相同。 1. **项闪烁**: 要实现项闪烁,我们可以利用定时器(Timer)组件,当定时器触发时,改变选中项的背景颜色,然后在下一次触发时恢复原色。以下是一个简单的实现: ```csharp private Timer timer; private int flashIndex; public ListColorfulBox() { InitializeComponent(); timer = new Timer(); timer.Interval = 500; // 设置闪烁间隔时间 timer.Tick += Timer_Tick; } private void Timer_Tick(object sender, EventArgs e) { if (flashIndex >= Items.Count) // 如果超过了最后一个项,则停止闪烁 timer.Stop(); else { SetItemColor(flashIndex, !GetItemColor(flashIndex)); // 切换项颜色 flashIndex++; } } private bool GetItemColor(int index) { // 获取项颜色,这里可以保存颜色状态或根据规则判断 return true; // 假设默认为亮色,闪烁时变为暗色 } private void SetItemColor(int index, bool isFlash) { // 设置项颜色,可以根据isFlash切换颜色 DrawItemEventArgs args = new DrawItemEventArgs(DrawItemState.Focused, Font, new Rectangle(0, index * Height / Items.Count, Width, Height / Items.Count), index, DrawItemState.None); if (isFlash) args.Graphics.FillRectangle(Brushes.Gray, args.Bounds); else args.Graphics.FillRectangle(Brushes.White, args.Bounds); DrawItem(args); // 重新绘制项 } // 当设置闪烁项时调用 public void StartFlash(int itemIndex) { timer.Start(); flashIndex = itemIndex; } ``` 2. **项变色**: 项变色可以根据项的数据或者条件来动态改变颜色。我们可以在`DrawItem`事件中实现这一功能: ```csharp protected override void OnDrawItem(DrawItemEventArgs e) { if ((e.State & DrawItemState.Selected) == DrawItemState.Selected) { e.Graphics.FillRectangle(Brushes.LightGray, e.Bounds); } else { if (/* 根据项的数据或条件判断是否需要变色 */) e.Graphics.FillRectangle(Brushes.Yellow, e.Bounds); else e.Graphics.FillRectangle(Brushes.White, e.Bounds); } // 绘制文本 string text = Items[e.Index].ToString(); SolidBrush brush = new SolidBrush(e.ForeColor); e.Graphics.DrawString(text, Font, brush, e.Bounds.X + 2, e.Bounds.Y + 2); } ``` 3. **代码拉动滚动条**: 控制滚动条可以通过修改ListBox的`TopIndex`属性实现。`TopIndex`表示可见项的起始索引,通过增加或减少它的值,可以实现向上或向下滑动的效果。 ```csharp public void ScrollUp() { if (TopIndex > 0) TopIndex--; } public void ScrollDown() { if (TopIndex < Items.Count - VisibleCount) TopIndex++; } ``` 以上代码示例展示了如何扩展ListBox以实现闪烁、变色和代码控制滚动条的功能。在实际应用中,你可以根据项目需求进行调整和优化。例如,对于项变色,你可以根据数据模型的某个属性来决定颜色;对于闪烁,可能需要添加更多的控制逻辑,如闪烁次数限制、闪烁速度调节等。而代码控制滚动条则适用于自动化测试或某些特定交互场景。
2025-03-27 17:31:26 114KB ListBox 代码拉动
1
在.NET Framework中,C#的ListView控件是用于显示数据集合的一种常见组件,它提供了多种视图模式,如图标、列表、小图标等。然而,对于一些特定的UI设计需求,ListView控件的原生功能可能显得较为局限,特别是在自定义外观和行为方面。为了解决这个问题,开发者常常需要对ListView进行重绘,以实现自定义控件。本篇将详细介绍如何在C#中创建一个自定义的ListView控件,并通过代码和说明文档来阐述这一过程。 我们讨论重绘的概念。在C#中,控件的绘制是通过OnPaint方法实现的,当控件需要更新其视觉表示时,会调用此方法。为了自定义ListView,我们需要覆盖这个方法,添加自己的绘制逻辑。这可能涉及到使用Graphics对象,以及Pen、Brush等绘图工具,以实现自定义背景、边框、文字样式等效果。 接下来,我们将关注如何创建自定义Header。ListView的列头(Header)默认样式有限,但通过重绘,我们可以实现带有渐变色、自定义字体、图像或更多高级功能的列头。CustomHeader可能是实现这个功能的一个类,它可能包含设置列头样式的方法和属性,以及重写OnPaint方法来绘制自定义列头。 在`CustomHeaderTest`文件中,可能包含了测试这个自定义列头功能的代码。通常,测试代码会创建一个ListView实例,然后为它添加自定义列头,设置各种属性,最后显示出来验证效果。这可能包括创建ColumnHeader对象,设置ColumnHeader的文字、宽度,以及将CustomHeader类与ColumnHeader关联的代码。 为了使自定义控件更好地集成到系统中,还需要处理各种用户交互事件,比如鼠标点击、拖动等。这些可以通过重写控件的MouseClick、MouseMove等事件处理程序来实现。例如,你可能需要在用户单击列头时实现列排序功能,或者在用户拖动列头时调整列宽。 此外,为了提高性能,重绘过程中需要考虑优化。例如,可以使用双缓冲技术避免闪烁,或者缓存部分绘制结果以减少不必要的绘制操作。这些优化策略可以显著提升用户体验。 在编写自定义控件的过程中,说明文档是至关重要的,它可以帮助其他开发者理解你的代码和设计决策。说明文档应包含以下内容: 1. 控件的基本功能和目的。 2. 如何使用这个自定义控件,包括实例化、属性设置和事件处理。 3. 示例代码,展示如何在实际项目中应用这个控件。 4. 控件的关键实现细节,如重绘逻辑、事件处理和性能优化。 5. 可能遇到的问题和解决方案。 通过C#中的ListView自定义控件,开发者可以扩展其功能,满足个性化的界面需求。虽然这个过程涉及到一些复杂的绘图和事件处理,但通过合理的代码组织和文档说明,可以使得自定义控件易于理解和维护。
2025-03-27 17:26:24 46KB ListView自定义控件 代码 说明文档
1
TR069(Technical Recommendation TR-069)是由DSL论坛(现为Broadband Forum)制定的一种通信协议,用于远程管理家庭和小型企业网络设备,如宽带调制解调器、路由器、IPTV机顶盒等。TR069 ACS(Auto-Configuration Server)是该协议的核心组件,负责与客户端设备(CPE,Customer Premises Equipment)进行通信,执行设备配置、故障诊断、软件更新等功能。 在"TR069 ACS代码"的项目中,我们关注的是C语言实现的ACS服务器端代码。C语言是一种底层、高效且广泛使用的编程语言,非常适合实现这种对性能和稳定性有高要求的网络服务。以下是关于TR069 ACS及其C代码实现的一些关键知识点: 1. **TR069协议架构**:TR069基于SOAP(Simple Object Access Protocol)和HTTP/TCP/IP协议栈,使用XML作为数据交换格式。它定义了管理模型、传输层安全、数据模型以及设备管理操作。 2. **ACS功能**:ACS主要负责以下任务: - 设备初始化和配置:为新设备分配IP地址,设置配置参数。 - 远程监控:收集设备状态信息,如在线状态、性能指标等。 - 故障检测和恢复:当设备出现问题时,ACS可以诊断并尝试修复。 - 软件升级:推送固件更新,确保设备的安全性和功能性。 3. **C代码实现**:在C语言中实现ACS,需要理解TR069的协议规范,包括消息结构、数据模型和操作流程。代码可能包含如下模块: - **SOAP解析和生成**:处理SOAP请求和响应,解析XML数据并将其转化为内部数据结构。 - **数据模型管理**:存储和操作设备的数据模型,如配置参数、状态变量。 - **安全机制**:实现HTTPS,确保通信过程中的数据安全。 - **事件处理**:监听设备事件,并根据需要触发操作。 - **设备管理接口**:提供API供其他系统调用,进行设备配置或获取设备状态。 4. **库和框架**:开发TR069 ACS时,可能会使用一些库来简化工作,如开源的CSP(C++ Simple Protocol)库,它提供了SOAP和XML处理的功能。 5. **测试和调试**:由于TR069涉及到复杂的网络通信和协议解析,测试和调试是至关重要的。这可能包括单元测试、集成测试以及模拟CPE设备进行的端到端测试。 6. **性能优化**:由于ACS需要处理大量并发设备的请求,性能优化是必须的,包括内存管理、线程池设计、异步处理等。 7. **扩展性和可维护性**:良好的代码组织和设计模式将确保ACS能够适应不断增长的设备类型和管理需求。 通过理解这些知识点,你可以更好地了解TR069 ACS C代码实现的复杂性和挑战,以及如何构建一个稳定、高效的ACS服务器。在实际项目中,开发者需要具备扎实的C语言基础,熟悉网络协议,以及良好的问题解决能力。
2025-03-27 16:36:55 397KB TR069
1