非晶基材表面激光立体成形Zr55Cu30Al10Ni5块体非晶合金,张媛媛,林鑫,本文采用同步送粉方式激光立体成形Zr55Cu30Al10Ni5块体非晶合金,研究了不同脉宽下(2.5ms,5ms,10ms)激光立体成形块体非晶合金的晶化特
2024-07-15 19:34:07 827KB 首发论文
1
锆基块体非晶合金在过冷液态区的流变行为及本构关系,张黎楠,谌祺,研究了块体非晶Zr55Cu30Al10Ni5在过冷液态区内的单向压缩变形行为。结果表明:材料在过冷液态区内的形变行为都强烈依赖于温度和变形速
2024-07-15 18:55:28 354KB 首发论文
1
预加载对块体非晶合金弹性极限的影响,魏然,昌云,作为一种具有高弹性的先进工程结构材料,块体非晶合金的强度应该通过弹性极限来评价。本文对铸态Zr52.5Cu17.9Ni14.6Al10Ti5块体非晶合金�
2024-07-15 18:32:52 655KB 首发论文
1
锆基块体非晶及非晶基复合材料在过冷液态区的形变,谌祺,柳林,利用电弧熔炼/水冷铜模吸铸技术制备了(Zr75Cu25)82.5-xTaxNi10Al7.5(x=4,8at%)块体合金。采用XRD和SEM对合金材料的结构进行了表征,发现�
2024-07-15 17:59:16 391KB 首发论文
1
在IT领域,算法设计与分析是核心组成部分,它关乎到软件和系统的效率、性能以及解决问题的能力。本主题聚焦于三个具体的问题:选课方案设计问题、Rectangle问题和圆排列问题,这些都是算法应用的经典实例。 选课方案设计问题通常涉及到组合优化。在大学教育系统中,学生需要在有限的课程资源下选择最佳的课程组合,满足学分要求、时间冲突限制和个人兴趣。这类问题可以使用贪心算法或回溯法来解决。贪心算法每次做出局部最优选择,期望整体结果也是最优;而回溯法则是在搜索空间中逐步构建解,遇到不满足条件的情况时回溯,寻找其他可能的路径。理解这些算法的适用场景和局限性是解决此类问题的关键。 Rectangle问题,也称为矩形覆盖问题,常见于计算机图形学和地理信息系统中。问题的核心是找出最小数量的非重叠矩形来覆盖给定的一组矩形区域。这可以关联到几何算法和数据结构,如最小生成树、线段树或者并查集。通过这些工具,我们可以高效地处理碰撞检测和空间划分,实现有效的矩形合并策略。 圆排列问题属于图论中的一个子领域,研究如何在平面中安排不相交的圆,使得它们的中心构成一个有向图,每对圆之间存在一条边,指向更小的圆。这个问题可以与欧拉回路、哈密顿回路等经典问题联系起来,也可以应用到网络设计、物流规划等领域。解决圆排列问题通常需要用到图的遍历算法,如深度优先搜索(DFS)或广度优先搜索(BFS),以及动态规划等高级策略。 这三个问题展示了算法设计与分析在实际问题解决中的广泛性和多样性。从选课方案的优化到二维空间的几何覆盖,再到图论中的排列问题,都要求我们具备扎实的算法基础和创新能力。掌握这些算法和方法不仅有助于解决当前的问题,也能为未来遇到的新挑战提供有力的工具。通过实践和深入学习,我们可以不断提升在算法设计与分析方面的专业素养。
2024-07-15 17:37:08 2.18MB
1
反复重熔母合金铸锭对Zr55Al10Ni5Cu30块体非晶合金晶化动力学的影响,胡勇,李金富,采用差示扫描量热仪研究了反复重熔母合金铸锭对Zr55Al10Ni5Cu30块体非晶合金晶化动力学的影响。在连续加热条件下,反复重熔几乎不会影
2024-07-15 17:21:28 541KB 首发论文
1
脉冲频率对脉冲激光重熔Zr55Cu30Al10Ni5块体非晶合金晶化行为的影响,杨高林,林鑫,本文采用脉冲激光重熔Zr55Cu30Al10Ni5块体非晶合金,研究了脉冲激光频率对激光重熔块体非晶合金晶化行为的影响。实验结果表明,对于给
2024-07-15 16:53:46 873KB 首发论文
1
在电子行业中,晶圆和芯片测试是至关重要的环节,它们直接影响到最终产品的质量和性能。本文将深入探讨晶圆和芯片测试的关键概念、流程以及技术。 晶圆是半导体制造的基础,通常由硅等材料制成,其表面布满了微型电路,这些电路就是我们常说的芯片。在晶圆制造过程中,首先进行的是设计,利用计算机辅助设计(CAD)工具创建电路布局。然后,通过光刻、蚀刻和扩散等步骤,将设计图案转移到晶圆上,形成各种半导体元件。在这个阶段,晶圆尚未切割成单个芯片,因此称为裸片。 芯片测试则是确保这些微小电路功能正常的关键步骤。测试通常分为多个阶段,包括前道测试、中间道测试和后道测试。前道测试主要针对晶圆制造过程中的各个步骤,检查晶圆的整体质量和工艺参数。中间道测试是在晶圆切割之前,对单个裸片进行功能性验证,以剔除有缺陷的芯片。后道测试则是在芯片封装之后,对成品进行电气性能评估,确保其符合规格要求。 测试过程中,会使用各种专门的测试设备,如探针台、自动测试设备(ATE)等。探针台用于接触裸片上的电极,以便进行电气测量。ATE则可以执行复杂的测试程序,模拟芯片在实际应用中的工作环境,检测其逻辑、速度、功耗等性能指标。 在晶圆测试中,一个常见的方法是晶圆探针测试,通过探针卡与晶圆接触,采集电流、电压等信号,分析芯片的电气特性。如果发现异常,就会标记出问题区域,供后续的良率提升分析。对于批量生产的晶圆,还需要统计分析测试结果,以优化制造流程,提高整体的良品率。 芯片测试不仅关乎性能,还涉及可靠性。例如,温度循环测试、湿度测试和机械冲击测试等,都是为了检验芯片在极端条件下的稳定性和寿命。此外,还有老化测试,通过长时间运行来验证芯片在长期使用中的可靠性。 在“晶圆及芯片测试.doc”文档中,可能会详细阐述以上各个方面的内容,包括具体的测试方法、设备介绍、测试标准以及最新的测试技术发展。了解这些知识对于半导体工程师、质量控制人员以及相关领域的研究人员至关重要,因为他们需要确保每一颗芯片都达到最优的性能和可靠性,从而满足日益复杂和严苛的市场需求。
2024-07-15 15:15:40 445KB 芯片测试
1
块体理论在某水电站地下厂房纵轴向比选中的应用,张顺,刘高,黄河某电站处于预可研究性阶段,地下厂房位置基本确定。厂房区位于厚层状或块体状的脆性岩体中,多组结构面发育,岩体质量以II级�
2024-07-15 14:58:17 580KB 首发论文
1
STM32F103C8T6是意法半导体(STMicroelectronics)生产的一款高性能、低成本的微控制器,属于STM32系列的通用型MCU。它采用ARM公司的Cortex-M3内核,工作频率最高可达72MHz,具有丰富的外设接口,包括GPIO、ADC、UART、SPI、I2C、定时器等,广泛应用于各种嵌入式系统设计。在本实验中,我们将重点讨论如何利用STM32F103C8T6的编码器接口进行速度测量。 编码器是一种用于测量旋转角度或速度的设备,通常有增量型和绝对型两种。增量型编码器通过产生脉冲信号来表示角度变化,而绝对型编码器则直接提供当前角度位置信息。在STM32F103C8T6中,我们通常使用TIM(Timer)模块配合编码器接口来处理编码器信号,实现对电机或其他旋转装置的速度测量。 实验开始前,首先需要配置编码器接口。STM32F103C8T6有两个TIM模块(TIM2和TIM3)支持编码器模式。我们需要选择其中一个TIM,并将其两个输入捕获通道(通常为CH1和CH2)连接到编码器的A相和B相信号。在编码器模式下,这两个通道会检测到来自编码器的脉冲,根据A相和B相的相对极性变化,STM32可以确定脉冲的上升沿和下降沿,从而计算出旋转速度。 配置编码器接口的步骤大致如下: 1. 初始化时钟:开启TIM模块所需的APB1或APB2时钟。 2. 配置GPIO:设置编码器信号线的输入模式,一般为浮空输入。 3. 设置TIM工作模式:将TIM配置为编码器模式,可以选择正常模式或者单边模式,根据编码器类型选择合适的计数方式。 4. 配置TIM输入滤波器:减少噪声影响,确保正确捕获脉冲。 5. 设置TIM输入捕获通道:分配编码器信号到相应的通道,如TIM2的CH1和CH2。 6. 启动TIM:使能TIM的计数器。 在获取编码器信号后,我们需要通过TIM中断或者DMA来处理脉冲计数。每当检测到一个上升沿或下降沿,TIM都会生成一个中断请求,通过中断服务程序更新计数值。通过比较两次中断之间的时间差,我们可以计算出电机转速。 实验代码通常包括初始化函数、中断服务函数和主循环中的速度计算部分。初始化函数负责上述配置步骤,中断服务函数负责更新计数值,主循环则读取计数值并计算速度。速度计算公式通常为: \[ \text{Speed} = \frac{\text{Pulse Count}}{\text{Time Difference}} \] 其中,脉冲计数(Pulse Count)由中断服务程序维护,时间差(Time Difference)可通过定时器获取或软件计时实现。 在实际应用中,可能还需要考虑编码器分辨率、电机齿轮比等因素对速度的影响。此外,为了提高精度,可以使用PID控制算法来调整电机速度,使其更接近目标值。 总结来说,基于STM32F103C8T6的编码器接口测速实验涉及到STM32的定时器配置、编码器接口设置、中断服务以及速度计算等多个关键知识点。通过这个实验,开发者能够深入理解微控制器如何与编码器交互,以及如何利用这些信息进行实时的电机速度控制。
2024-07-15 11:26:23 285KB stm32
1