永磁同步电机基于刚性等级的工程整定方法simulink仿真模型,速度环PI基于刚性等级调整,电流环PI基于环路带宽调整,双闭环基本只需要调整2个参数即可。 理论及模型搭建说明: 永磁同步电机PMSM环路工程整定方法: https://blog.csdn.net/qq_28149763/article/details/145230860
2025-05-20 00:02:26 77KB PMSM 电机控制 simulink
1
内容概要:本文详细介绍了基于PID算法的单片机半导体温控系统的开发过程以及Proteus仿真效果。文中首先阐述了PID算法的核心计算方法,特别是位置式PID算法的应用,通过限制积分项防止过冲,确保系统的稳定性和精度。接着描述了硬件部分的设计,包括使用半导体致冷片作为执行器,利用PWM驱动H桥来实现升温和降温的快速切换。此外,还展示了LCD显示屏的定制化应用,实现了温度的实时监控。最后分享了调参过程中遇到的问题及解决方案,最终实现了从室温到60℃的精准控温。 适合人群:对嵌入式系统开发感兴趣的电子工程师、自动化专业学生以及从事相关领域的技术人员。 使用场景及目标:适用于需要进行精密温度控制的实验环境或产品开发中,旨在帮助读者掌握PID算法的实际应用技巧,提高温控系统的性能。 其他说明:附有完整的STM32标准库工程和Proteus8.12仿真文件,方便读者动手实践并深入理解整个系统的运作机制。
2025-05-19 21:50:00 6.2MB
1
有源中点钳位三电平逆变器(ANPC)是一种应用于电力电子领域的高效能量转换设备,它通过采用特定的控制策略和拓扑结构来实现电能的高质量转换。ANPC逆变器的核心优势在于其能够在不增加开关器件数量的前提下,实现更高的电平数量,这使得逆变器在相同开关频率下可以输出更平滑的电压波形,并且提高了系统的稳定性和效率。 在MATLAB Simulink环境下进行建模仿真,是分析和研究ANPC逆变器的重要手段。MATLAB是一个功能强大的数值计算和工程仿真软件,而Simulink则是其基于图形化编程的扩展模块,用于系统建模和仿真。使用MATLAB 2017b版本搭建的ANPC仿真模型,能够有效地模拟实际工作条件下的逆变器性能,包括其调制策略、控制算法以及输出特性等。 仿真模型中所提到的三种ANPC调制方法,可能包括传统的SVPWM(空间矢量脉宽调制)以及两种改进型的调制策略。SVPWM是一种常用的逆变器调制技术,它通过控制逆变器开关器件的开关顺序和时间,来调整输出电压的幅值和相位。在中点平衡SVPWM控制算法中,通过精确的算法确保逆变器中点电位的稳定,这一点对于多电平逆变器尤为重要,因为中点电位的不稳定会直接影响到逆变器的输出电压质量。 有源中点钳位三电平逆变器的拓扑结构设计是复杂而精细的。它通常由多个功率开关器件和钳位二极管组成,这种设计可以有效地限制器件上的电压应力,延长设备的使用寿命。同时,由于逆变器的输出是三电平结构,因此它在运行时可以实现更为精细的电压控制,进而提高整个系统的性能。 从文件名称列表中可以看出,所包含的文件类型多样,既有文字说明文件,也有HTML格式的说明文档,以及图片文件。这些文件共同构成了ANPC逆变器仿真模型的详细解读和技术分析。例如,“仿真模型详解三电平有源中点钳位逆变”文档可能会详细阐述逆变器的工作原理、控制策略、仿真模型的搭建过程以及相关参数的设定方法。“仿真模型技术分析基于的中点钳位三电平逆变器一引言”则可能包含了逆变器技术背景、发展历程和研究意义的介绍。 综合来看,ANPC逆变器的仿真模型研究对于电力电子领域具有重要意义。通过MATLAB Simulink这一强有力的仿真工具,研究人员和工程师可以深入理解ANPC逆变器的特性,优化其设计,预测其在实际应用中的表现,进而推动逆变器技术的发展和应用。
2025-05-19 21:21:28 158KB
1
在IT领域,文件系统是操作系统的核心组成部分,负责管理和组织存储设备上的数据。FUSE(File System in Userspace)是一个开源的、轻量级的框架,它允许非特权用户在Linux内核中实现自定义文件系统,而无需修改内核源码。本主题“基于FUSE的简单文件系统 完整代码”将深入探讨如何使用FUSE库创建一个基本的用户空间文件系统,并提供了一份完整的代码示例。 FUSE的主要优势在于它的灵活性和易用性。开发者可以通过编写C语言程序,利用FUSE提供的接口来实现文件系统的行为,如打开、读取、写入、创建、删除等操作。由于运行在用户空间,FUSE文件系统不需要重新编译内核,这简化了开发和部署过程。 在FUSE中,开发者通常需要实现一系列回调函数,这些函数对应于标准的文件系统操作。例如: 1. `init`: 文件系统挂载时被调用,用于初始化必要的资源。 2. `getattr`: 获取文件或目录的属性,如权限、大小、时间戳等。 3. `readlink`: 读取符号链接的目标路径。 4. `readdir`: 读取目录的内容,返回目录项列表。 5. `open`: 打开文件,返回一个文件描述符。 6. `read`: 从文件中读取数据。 7. `write`: 向文件写入数据。 8. `create`: 创建新文件或符号链接。 9. `unlink`: 删除文件。 10. `mkdir`: 创建目录。 11. `rmdir`: 删除目录。 12. `rename`: 重命名文件或目录。 13. `flush`: 在文件关闭前执行清理操作。 14. `destroy`: 文件系统卸载时被调用,用于释放资源。 `openmaster`可能是这个项目中的主程序或者主要模块,它可能包含了上述提到的一些回调函数的实现。通过分析和学习`openmaster`的代码,我们可以理解如何构建一个基本的FUSE文件系统,以及如何处理各种文件操作。 在实际应用中,FUSE被广泛用于创建各种特殊用途的文件系统,比如网络文件系统、加密文件系统、压缩文件系统等。例如,使用FUSE可以轻松实现一个只读的文件镜像系统,或者一个在内存中实现的临时文件系统。 要运行一个FUSE文件系统,通常需要以下步骤: 1. 编写用户空间程序,实现FUSE接口。 2. 编译程序,并确保链接了FUSE库。 3. 挂载FUSE文件系统到指定的挂载点,通常使用`fuse`命令或者`mount`命令,提供可执行文件和挂载点作为参数。 在学习和研究这个“基于FUSE的简单文件系统 完整代码”时,你不仅可以了解FUSE的工作原理,还能掌握如何设计和实现自己的文件系统。这将有助于提升对操作系统底层机制的理解,特别是文件系统层面的知识,对于进行系统编程、存储技术开发等工作非常有帮助。通过实践,你可以进一步探索FUSE的各种高级特性,如异步操作、缓冲策略、错误处理等,以满足更复杂的需求。
2025-05-19 17:57:17 2.17MB 文件系统
1
### 基于MATLAB的光学干涉仿真 #### 一、引言 光学干涉作为一种重要的物理现象,在科学研究和技术应用中有着广泛的应用。基于MATLAB的光学干涉仿真是一种有效的教学工具和研究手段,可以帮助学生和研究人员更好地理解干涉原理,并进行定量分析。 #### 二、MATLAB在光学干涉仿真中的应用 MATLAB作为一款强大的数学计算软件,不仅能够处理复杂的数学问题,还能通过其丰富的图形用户界面(GUI)功能来创建直观的交互式应用程序。在光学干涉仿真的背景下,MATLAB提供了一个理想的平台来模拟不同的干涉现象,并且可以进行精确的定量测量。 #### 三、实验原理及MATLAB仿真 ##### 3.1 牛顿环干涉 牛顿环干涉是一种常见的干涉现象,当一个平凸透镜放置在一个平坦的玻璃板上时,光线在透镜和平板之间形成多层空气膜。当光线穿过这些空气膜并反射回来时,会在透镜表面形成一系列明暗相间的圆环。这些圆环的形成遵循一定的公式: \[ I = I_0 \cos^2\left[\frac{\pi d}{\lambda}\left(\sqrt{1 + \frac{2r^2}{R}} - 1\right)\right] \] 其中,\(I\) 是干涉光强,\(I_0\) 是入射光强度,\(d\) 是平凸透镜的曲率半径,\(r\) 是干涉环的半径,\(\lambda\) 是光的波长。 ##### 3.2 迈克尔逊干涉仪 迈克尔逊干涉仪是一种非常精密的光学仪器,可以用来测量非常小的距离变化。其基本原理是将一束光分成两路,每一路经过不同的路径长度后重新汇合形成干涉条纹。迈克尔逊干涉仪的光强分布可以表示为: \[ I = I_0 \cos^2\left[\frac{\pi}{\lambda}(2d - d_0)\right] \] 这里,\(d\) 是动镜与定镜之间的距离,\(d_0\) 是初始位置时的差值,\(\lambda\) 是光的波长。 #### 四、MATLAB GUI 实现 为了实现基于MATLAB的光学干涉仿真,可以通过以下步骤构建GUI界面: 1. **GUI界面设计**:设计包含坐标轴、按钮和文本标签等元素的界面。 - **坐标轴对象**:用于绘制干涉图案。 - **按钮**:包括用于启动不同干涉实验(如牛顿环和迈克尔逊干涉)的按钮,以及用于读取数据点坐标和退出程序的按钮。 - **静态文本标签**:用于标注提示信息。 2. **编写GUI回调函数代码**:为每个GUI元素编写对应的M文件,定义它们的行为和功能。 - **绘图功能**:编写代码来模拟牛顿环和迈克尔逊干涉的现象,并在坐标轴上绘制相应的干涉图案。 - **数据读取**:实现从干涉图案中读取特定数据点坐标的功能,以便进行进一步的定量分析。 - **退出程序**:为退出按钮编写相应的回调函数,确保程序可以正常关闭。 #### 五、结论 基于MATLAB的光学干涉仿真软件不仅可以帮助学生和研究人员更好地理解和掌握光学干涉的基本原理,还能通过定量测量的方式提高实验的精确度。通过MATLAB GUI的强大功能,我们可以创建一个直观且易于操作的用户界面,极大地提高了学习和研究的效率。这种仿真软件不仅在教育领域有很高的价值,在科学研究和技术开发方面也具有广泛的应用前景。
2025-05-19 17:53:45 200KB
1
无线充电技术详解:Maxwell Simplorer与Ansys教你WPT无线电能传输系统实战教程,无线充电技术解析:从Ansys Maxwell Simplorer仿真实战教程,深度探索无线电能传输之道,无线充电仿真 maxwell Simplorer无线充电,无线电能传输,WPT Ansys教程 ,无线充电仿真; Maxwell Simplorer; 无线电能传输; WPT; Ansys教程,Maxwell Simplorer无线充电仿真:无线电能传输与Ansys教程指南 无线充电技术是通过电磁感应或其他无线传播方式进行电能传输的技术,近年来随着科技的进步和对便携式电子设备的需求增长,该技术得到了迅猛发展。本教程深入讲解了无线充电技术的核心原理,以及如何使用Ansys Maxwell Simplorer进行仿真实战。通过本文内容,读者将能够了解无线电能传输(WPT)的整个工作流程,包括无线电能传输的原理、技术实现的关键因素、以及在仿真软件中如何模拟实际应用场景。 在无线充电技术的发展历程中,电磁感应原理的应用无疑是最为常见的一种方式。该技术基于法拉第电磁感应定律,通过创建一个交变磁场,使次级线圈感应出电流,从而实现电能的无线传输。然而,无线充电技术不仅仅局限于电磁感应方式,还包括磁共振、无线电波、激光传输等多种形式,每种方式都有其特定的应用场景和优缺点。 Maxwell Simplorer是一款由Ansys公司开发的电磁场仿真软件,它能够帮助工程师模拟复杂的电磁系统,进行高效的设计和优化。在无线充电技术的仿真实践中,Maxwell Simplorer能够模拟电磁场的分布,分析能量传输效率,以及预测系统在不同条件下的性能表现。通过该软件的仿真实验,工程师可以优化无线充电系统的线圈布局、材料选择和工作频率等关键参数,从而提高充电效率和安全性。 Ansys公司提供的仿真工具不仅限于Maxwell Simplorer,还包括HFSS、Q3D等先进的仿真软件,这些工具在无线充电技术的研发和应用中发挥着重要的作用。HFSS主要用于高频电磁场的仿真,而Q3D则专注于电磁场的3D仿真分析,这些工具的综合运用,可以全面分析无线充电系统中的电磁兼容性、热效应及功率损耗等问题。 此外,无线电能传输系统的设计不仅仅考虑电磁兼容性和效率,还要考虑系统的可靠性、安全性和成本效益。因此,在进行无线充电技术的仿真与设计时,还需考虑多种因素,例如线圈的尺寸、形状和间距,以及传输介质的特性等。这些因素直接影响到无线充电系统的性能,包括充电距离、充电效率和发热问题等。 在实际应用中,无线充电技术已经广泛应用于手机、电动汽车、医疗设备、工业设备等多个领域。对于电动汽车而言,无线充电技术能够提供更加便捷的充电方式,减轻用户的充电负担。而在医疗领域,无线充电技术可以用于植入式医疗设备,避免了导线对病患造成的不便和感染风险。随着技术的不断进步,无线充电技术未来有望实现更远距离、更高效率的电能传输,为人们的生活带来更加智能化和便利化的改变。 由于无线充电技术的多样性和复杂性,本教程以实战案例的方式,通过详细的仿真步骤和结果分析,指导读者逐步掌握无线充电技术的设计与应用。本教程不仅适合于电子工程、电气工程等相关专业的学生和工程师,同时也为对无线充电技术感兴趣的科技爱好者提供了宝贵的学习资料。通过阅读本教程,读者将能够深入了解无线充电技术的原理和仿真实践,为无线充电技术的创新和应用贡献自己的力量。
2025-05-19 17:13:28 2.86MB paas
1
在本文中,我们将深入探讨"C51+Proteus篮球计数器仿真"这一主题,主要涉及C语言编程和单片机技术。我们要理解C51是针对8051系列单片机的特定版本的C编译器,而Proteus是一款流行的电子电路仿真软件,它允许我们在虚拟环境中设计、测试和调试硬件项目。 一、C语言在单片机编程中的应用 C语言是一种结构化、高效的编程语言,特别适合于单片机编程。在篮球计数器项目中,C51编译器被用来编写控制8051单片机的程序。C语言的语法简洁,易于理解,使得开发者可以方便地编写出控制计分逻辑、24秒计时器和蜂鸣器功能的代码。例如,通过循环、条件语句(if-else)和函数来实现计分的增加和24秒计时。 二、8051单片机 8051单片机是Intel公司开发的一种微控制器,广泛应用于各种嵌入式系统。在篮球计数器中,8051将执行由C51编译的程序,处理输入(如按钮操作)和输出(如显示分数、控制蜂鸣器)。8051通常配备有GPIO(通用输入/输出)引脚,用于连接外部设备,比如按钮、LED显示器和蜂鸣器。 三、Proteus仿真 Proteus为硬件设计提供了强大的模拟环境,使得开发者可以在实际硬件制作前验证代码的正确性。在这个篮球计数器项目中,你可以使用Proteus构建8051单片机的电路模型,包括连接的按钮、LCD显示屏和蜂鸣器。通过运行仿真,可以观察到计分器是否按照预期工作,例如,当按下加1分、加2分或加3分的按钮时,分数是否正确更新;24秒计时结束后,蜂鸣器是否发出声音。 四、计分逻辑与24秒计时器 篮球计分器的核心逻辑包括两部分:分数管理和24秒计时。使用C51编程,可以创建两个变量分别存储两个队伍的分数,并根据用户操作更新这些变量。24秒计时器则可以通过一个定时器中断实现,每当定时器溢出时,计时器值减一,直到达到零时触发蜂鸣器。 五、蜂鸣器控制 蜂鸣器的控制通常通过单片机的GPIO引脚完成。通过设置引脚状态(高电平或低电平),可以使蜂鸣器发声或保持静默。在篮球计数器中,蜂鸣器可能在每次得分或24秒计时结束时触发,提醒比赛状态。 六、源码分析与学习 源码是理解整个系统工作原理的关键。在提供的"篮球计数新"文件中,应该包含了C51语言编写的源代码,我们可以从中学习如何使用C51库函数进行I/O操作,如何设置中断,以及如何处理计时和计分的逻辑。通过分析和理解这些代码,可以提升单片机编程能力。 总结,"C51+Proteus篮球计数器仿真"项目是一个综合性的学习平台,涵盖了C语言编程、8051单片机应用、硬件电路设计以及软件仿真等多个方面,对于初学者来说,这是一个很好的实践和提高技能的机会。通过这个项目,不仅可以了解单片机的基本操作,还能学习到如何用C语言编写控制逻辑,以及如何利用Proteus进行硬件验证。
2025-05-19 17:05:35 364KB
1
### LT-spice教程知识点 #### 一、简介与安装 - **LT-spice**是一款免费的电路仿真软件,被广泛应用于电气与电子工程领域。它能够帮助用户在实际制作电路之前进行理论验证与优化。 - **安装过程**相对简单,官方提供详细的安装指南和支持。 #### 二、练习例子:无稳态多谐振荡器(Astable Multivibrator) - **打开电路图**:通过打开预设的电路模板或手动绘制电路来开始仿真。 - **信号分布**:了解如何设置输入信号的类型(如正弦波、方波等)及其参数(频率、幅度等)。 - **删除结果屏幕中的信号轨迹**:在仿真结果界面中,可以清除不需要的信号轨迹以保持界面整洁。 - **更改曲线颜色**:为了更清晰地区分不同的仿真结果,可以通过设置改变特定信号轨迹的颜色。 - **调整仿真时间**:根据需要调整仿真的持续时间,以便观察不同时间段内的电路行为。 - **调整显示的电压或电流范围**:调整Y轴的范围来更好地观察特定信号的细节。 - **使用游标进行测量**:利用游标功能对波形的特定点进行精确测量。 - **差分测量**:学习如何测量两个信号之间的差异,这对于比较不同电路部分的响应非常有用。 - **电流测量**:学会如何测量电路中的电流值,这对于分析电路性能至关重要。 - **修改元件值**:仿真过程中可以轻松地调整电阻、电容等元件的值,以便观察其对电路行为的影响。 #### 三、RC低通滤波器作为首个项目 - **绘制电路图**:使用电路编辑器绘制简单的RC低通滤波器电路图。 - **分配新的元件值**:为电阻和电容分配具体的数值。 - **研究瞬态过程**: - **阶跃响应**:观察输入电压发生突变时电路的响应情况。 - **开关过程**:通过模拟电路的开关操作,研究其动态特性。 - **脉冲响应**:向电路输入一个短促的脉冲信号,观察电路的反应。 - **周期性信号输入**: - **正弦信号**:使用特定频率的正弦信号作为输入,分析其频率响应。 - **方波信号**:研究不同频率下的方波信号对电路的影响。 - **三角波信号**:考察三角波信号对滤波器性能的影响。 - **AC扫频分析**:通过改变输入信号的频率来确定滤波器的频率特性。 #### 四、FFT(快速傅立叶变换) - **概念介绍**:FFT是一种高效的计算离散傅立叶变换的方法。 - **应用示例**:将FFT应用于之前的RC低通滤波器仿真结果中,分析信号的频谱成分。 #### 五、第二个项目:整流电路 - **单相整流器**:不带变压器的简单整流电路。 - **创建SPICE模型和符号**:为变压器建立SPICE模型,并设计相应的电路符号。 - **单相整流器加变压器**:在此基础上添加变压器,进一步提高电路的实用性。 - **使用1N4007二极管**:将该型号二极管用于整流电路中,分析其性能特点。 - **双相整流器加变压器**:构建更复杂的双相整流电路,进一步提升电路效率。 #### 六、第三个项目:旋转磁场 - **旋转磁场系统编程**:介绍如何使用LT-spice进行旋转磁场系统的仿真。 - **汽车发电机整流桥**:研究汽车发电机中的整流桥电路。 #### 七、第四个项目:展示元件特性曲线 - **欧姆定律电阻**:分析标准电阻的特性曲线。 - **二极管**:探讨二极管的伏安特性。 - **NPN晶体管**:研究NPN型晶体管的工作原理及特性曲线。 - **N沟道结型场效应管**:介绍这类场效应管的基本特性和应用场景。 #### 八、第五个项目:含有晶体管的电路 - **单级放大器**: - **正弦信号驱动**:使用正弦信号作为输入信号进行仿真。 - **频率响应分析**:进行AC扫频分析,确定放大器的频率特性。 - **两级反相宽带放大器**: - **关键参数**:介绍放大器的关键设计参数。 - **仿真电路与设置**:详细说明仿真电路的具体配置。 - **时域仿真**:在时间域内观察电路的动态响应。 - **直流偏置分析**:分析电路在直流工作点处的行为。 - **AC扫频**:进一步进行频率响应分析。 以上内容涵盖了从基础到高级的各种LT-spice使用技巧和电路仿真实例,非常适合初学者和进阶用户学习和参考。
2025-05-19 16:42:13 2.64MB 软件操作讲义 电路原理仿真
1
"直接序列扩频通信系统设计和仿真实现" 直接序列扩频通信系统(DS-CDMA)是一种广泛应用于现代通信领域的技术,具有抗干扰性强、隐蔽性好、易于实现码分多址(CDMA)、抗多径干扰、直扩通信速率高等众多优点。该系统的设计和仿真实现是非常重要的研究课题。 直接序列扩频通信系统的应用背景 直接序列扩频通信系统的应用背景主要来自于当前通信技术的发展需求。随着移动通信、卫星通信、计算机网络等领域的发展,对于通信系统的要求越来越高。直接序列扩频通信系统正是满足这些需求的技术之一。 直接序列扩频系统的特点 直接序列扩频系统具有多种优点,包括抗干扰性强、隐蔽性好、易于实现码分多址(CDMA)、抗多径干扰、直扩通信速率高等。这些特点使得直接序列扩频系统在许多领域中得到广泛应用。 CDMA 数字蜂窝移动通信 CDMA(Code Division Multiple Access)是一种多址接入技术,能够在同一频率带宽上同时传输多个信号。CDMA 数字蜂窝移动通信是基于CDMA技术的移动通信系统。CDMA技术的应用背景、特点、基本原理等方面将在下文中详细介绍。 CDMA 技术背景 CDMA 技术的发展可以追溯到第二次世界大战期间,美国军方为了保护通信安全而开发的秘密通信技术。后来,CDMA 技术逐渐应用于商业通信领域,并逐步演变为现在的CDMA移动通信系统。 CDMA 技术的特点 CDMA 技术具有多种优点,包括高频谱利用率、抗干扰能力强、隐蔽性好、易于实现码分多址等。这些特点使得CDMA技术在移动通信领域中得到广泛应用。 扩频码序列 扩频码序列是直接序列扩频通信系统中的一个关键组件。扩频码序列可以生成伪随机信号,用于spread spectrum modulation。扩频码序列的设计和生成是直接序列扩频通信系统的重要研究课题。 直接序列扩频通信技术 直接序列扩频通信技术是基于扩频码序列的通信技术。该技术可以提供高频谱利用率、抗干扰能力强、隐蔽性好等多种优点。直接序列扩频通信技术的设计和仿真实现是非常重要的研究课题。 直接序列扩频的概念及理论基础 直接序列扩频是基于扩频码序列的通信技术。该技术的理论基础来自于信号处理和通信理论领域。直接序列扩频的概念、理论基础和基本原理将在下文中详细介绍。 直接序列扩频的基本原理 直接序列扩频的基本原理来自于信号处理和通信理论领域。该技术的基本原理包括扩频码序列的生成、spread spectrum modulation、抗干扰能力强等方面。 直接序列扩频通信系统设计和仿真实现是一个复杂的研究课题,涉及到多个领域的知识和技术。为了更好地理解和掌握直接序列扩频通信系统,需要深入研究和分析相关的技术和理论基础。
2025-05-19 16:04:07 1.12MB
1
内容概要:本文详细介绍了利用Maxwell和Simplorer进行无线电能传输(WPT)系统的联合仿真方法。首先,通过Maxwell建立磁耦合机构的几何模型并设置材料属性和激励条件,模拟发射和接收线圈的磁场分布。然后,在Simplorer中构建与磁耦合机构相连的电路系统,如串联谐振电路,并通过接口设置实现两者的联合仿真。最终,通过分析仿真结果,包括电流、电压、功率及传输效率等数据,优化无线电能传输系统的设计。 适合人群:从事无线电能传输研究的技术人员、高校相关专业师生以及对电磁仿真感兴趣的工程技术人员。 使用场景及目标:适用于无线电能传输系统的设计与优化,帮助研究人员深入了解磁耦合机构的磁场分布及其对外部电路性能的影响,从而提高系统的传输效率。 其他说明:文中还分享了一些实用的操作技巧和注意事项,如参数设置、误差校正等,有助于初学者更快掌握联合仿真的方法。
2025-05-19 15:01:38 124KB
1