首 先 ,建 立 了 魔 术 轮 胎 模 型 、线 性 轮 胎 模 型 。在 此 基 础 上 ,建 立 了 非线 性 车 辆 动 力 模 型 ,将 非 线 性 车 辆 模 型 进 行 简 化 、线 性 化 得 到 线 性 车 辆 模型 ;根 据 运 动 学 建 立 点 质 量 车 辆 模 型 。其 次 ,研 究 无 迹 卡 尔 曼 滤 波 算 法 ,结 合 离 散 后 的 非 线 性 车 辆 模 型 ,对 路 面 附 着 系 数 估 计 。再 次 ,提 出 采 用 非均 匀 B 样 条 曲 线 构 造 避 撞 路 径 模 型 ; 根 据 紧 急 避 撞 工 况 中 的 场 景 信 息 生成 避 撞 路 径 簇 ;构 建 乘 员 舒 适 性 指 标 最 优 的 目 标 函 数 ,添 加 防 侧 滑 约 束 和路 面 附 着 系 数 约 束 ,优 化 出 乘 员 舒 适 性 最 佳 的 避 撞 路 径 。最 后 ,采 用 PID控 制 器 对 车 辆 纵 向 速 度 进 行 跟 踪 ; 采 用 线 性 车 辆 模 型 设 计 模 型 预 测 控 制器 ,控 制 车 辆 前 轮 转 角 实 现 对 避 撞 路 径 的 跟 踪 控 制 ;为 了 保 证 车 辆 避 撞 时的 稳 定 性 ,将 质 心 侧 偏 角 约 束 加 入 到 模 型 预 测 控 制 器 中 ,同 时 ,根 据 路 面状 况 , 添 加 路 面 附 着 条 件 约 束 。 利 用 Simulink 与 Carsim 联 合 仿 真 验 证 主 动 避 撞 算 法 的 可 行 性 。仿 真 结 果 表 明 : 本 文 提 出 路 径 规 划 算 法 和 路 径 跟 踪 算 法 能 够 在 高 速 紧 急 避 撞工 况 下 完 成 避 撞 任 务 , 并 且 提 高 乘 员 舒 适 性 以 及 保 证 车 辆 稳 定 性 。
首先,详细介绍了本论文的研究现状、研究意义以及智能车主动避撞技术的发展现 状,详细介绍了当前智能车辆路径规划和轨迹跟踪控制技术的相关方法以及各种方法的长处与不足。本文结合 PID 控制和模糊控制两种控制算法的优势,确定了用模糊自适应PID 轨迹跟踪控制器作为避撞模型的轨迹跟踪层,以克服单一的 PID 控制器参数不能在线调节的弊端。为避免出现极限情况下跟踪不好的问题,确定了 MPC 控制算法在轨迹跟踪层的应用。为解决智能车辆在动态环境下轨迹规划问题,论文选用了模型预测轨迹重规划算法作为轨迹规划层。 其次,以前轮转向的智能车为研究对象,建立了车辆坐标系,建立了二自由度的智 能车辆动力学方程。在研究轨迹跟踪问题的过程中,详细介绍了模糊 PID 轨迹跟踪控制器和 MPC 轨迹跟踪控制器的建立过程,并在 Matlab/Simulink 环境中分别对其跟踪效果进行仿真。结果显示在车速为 18km/h、36km/h 和 72km/h 时,对于不同的跟踪轨迹(直线和双移线),两者都有较理想的跟踪效果。然后,论文详细介绍了模型预测理论在动态环境中轨迹重规划的应用,并据此建立了智能车主动避撞模型的轨迹规划器。为满足实时性和鲁棒性的需要,论文轨迹规划层采用了计算量较少的点质量车辆模型。 最后,论文利用前面建立的模糊 PID 和 MPC 控制器分别作为轨迹跟踪层,利用模型预测动态轨迹规划器作为轨迹规划层,搭建了轨迹规划+轨迹跟踪的双层控制器作为智能车主动转向避撞模型。最后在 Matlab/Simulink 环境中分别对其避撞效果进行仿真,结果显示,当车速为 18km/h、36km/h 时,该模型有较好的避撞效果,并在避撞之后能够及时跟踪原来的轨迹行驶;但当车速为 72km/h 时,由于车速较高,障碍物信息过早的加入会导致智能车较早进行轨迹重规划并偏离原来轨迹,但整体上来说该避撞模型都实现了避撞的设计目标。论文选用的轨迹规划和跟踪算法都能满足智能车主动避撞技术的要求。
先,采取将超声波传感器和轮速脉冲传感器结合的方式实现车位的检测和泊车初始位置获取。为了提高测量数据稳定性和精度,防止单个雷达失效的情况,提出使用同侧的两个超声波雷达同时对车位进行探测,并结合基于相似度的数据融合方法得到更准确的车位信息。 然后,对车辆低速运动过程进行研究,建立了基于后轴中心为参考点的运动学模型,明确了该参考点在车速和方向盘转角输入下的运动规律,并将规律推广到车身各顶点。分析了单步平行泊车的车辆运动学条件和碰撞约束条件,并将其作为非线性约束,基于 B 样条曲线理论设计路径优化函数。在此基础上,选取多个泊车起点进行 MATLAB 路径规划仿真,验证了路径规划方法合理性。为了跟踪规划出的目标路径,先采用基于 EKF 的航迹推算方法滤除传感器中的噪声信号,得到精确的车辆局部定位信息。利用车辆实时位姿与目标路径的偏差,设计了基于模型预测控制的路径跟踪控制器,选取了合适的目标函数,将跟踪控制问题转换为凸优化的二次型最优求解问题,并对控制器参数选择问题进行研究。同时,介绍了广泛用于路径跟踪的一种纯追踪控制方法,用作控制器控制效果的对比验证。 通过 MATLAB/Simulink 与 Carsim 的联合仿真,对比模型预测控制和纯追踪 控制两种控制算法下的路径跟踪的位置误差和航向误差进行控制效果验证。最 后,在实车上验证了基于双超声波雷达数据融合的车位检测算法的有效性。并 进行了泊车系统控制策略的功能验证,通过 CAN 总线获取的实时数据进行误差 分析,证明了规划路径的合理性和路径跟踪控制器的有效性
本课题来源于某校企合作研发项目,旨在实现区域自动代客泊车应用,本文重点研 究自主引导行驶技术中的全局路径规划算法和参考路径跟踪控制应用算法。为实现智能车自动行驶控制,本文首先基于项目系统要求和现有实验车辆平台,建立满足行车控制要求的车辆运动学模型,通过线性化和离散化处理,构建能够描述车辆运动状态的离散状态空间方程,为智能车的行驶状态预测和控制算法提供理论基础。同时本文测绘记录实验场地(室外停车场)位置地图,描述行车道路、停车位、树木和障碍物等之间的精确位置关系,结合道路行驶规则和 OpenDRIVE 路网技术建立实验场地高精度电子地图,为智能车系统路径规划和跟踪控制提供环境信息。 然后结合图论和启发式路径搜索理论,基于在高精度电子地图中设定的道路航点, 综合路径最优和操控性以改进 Floyd+A*混合路径规划算法;通过构建路径规划策略,实现智能车行驶全局参考路径的在线动态规划,为智能车的行驶提供安全最优的参考路线。为保证智能车能够精准地按照参考路径行驶,结合模型预测控制算法,设计满足智能车模型和行驶控制要求的路径跟踪控制器。将控制器的目标函数求解问题转化为二次规划求解问题,在 QP 求解方法的基础上,结合对偶算法通过对海森矩阵分解求逆,提出一种新的 QPKWIK 求解器,在 Matlab/Simulink 软件仿真平台上验证了 QPKWIK 求解器的快速性和有效性。 最后设计搭建实验车辆系统平台,通过对实际行车数据分析,验证了本文路径规划 算法、路径跟踪控制器和自主引导行驶系统的有效性和可行性。结合全自动泊车技术,实现区域自动代客泊车应用。
针对车辆低速倒车这一运动过程,建立了车辆数学模型。根据分析车辆数学 模型,得到能够满足多数情况下的泊车路径。由于自动泊车过程可分解为寻找最 佳泊车位置及从最佳泊车位置倒入停车位两个过程,针对这两个过程,分析了无 障碍式及有障碍式的泊车路径。针对有障碍式泊车路径中的寻找最佳泊车位这一 过程通过对群智能算法的比较,运用粒子群算法对其进行了路径规划。通过分析 模糊控制相关知识,针对从最佳泊车位置到停车位这一泊车过程,建立一种模糊 控制方法,通过 MATLAB 仿真实现了其泊车过程
没有速度测量的二阶多智能体系统的一种新型共识算法
2021-04-30 12:03:14 2.25MB 研究论文
1
为了准确预测铣刀在加工过程中的磨损量,提出一种基于粒子群算法的支持向量回归机的优化算法用于对铣刀 磨损量的建模与预测。通过粒子群算法,优化输入不同维度的特征向量的支持向量回归机的建模,得到特征向量维度的最 优解和对应的支持向量回归机训练参数,建立了铣刀磨损量的预测模型。通过随机选取的真实样本,验证了该模型的准 确性。
2021-04-28 10:04:04 930KB jiqixuexi
1
滚动时域优化(RHC)MATLAB源代码,用于动态环境下影响下系统的自适应控制,可以运行。 滚动时域优化(RHC)MATLAB源代码,用于动态环境下影响下系统的自适应控制,可以运行。
2021-04-27 20:52:32 55KB 滚动时域优化 模型预测控制
1
编写的标准粒子群优化算法,可应用于各个领域。应用于电力系统较为成功。
2021-04-27 13:54:34 3KB 粒子群算法 电力系统
1
针对多智能体系统中等式约束下的二次凸优化问题,给出一种事件驱动机制下的分布式优化算法.该算法可以降低每个智能体控制协议的更新频率以及智能体之间的通信负担.基于图论和李雅普诺夫函数方法给出两种不同的事件触发条件,其中第2种事件触发条件不需要拉普拉斯矩阵的最大特征根的信息,可实现算法全分布式实施.两种事件触发条件均可实现算法渐近收敛到优化值,避免智能体控制协议的连续更新以及智能体之间的连续通信,同时保证每个智能体相邻事件触发时刻的时间间隔大于0,避免持续事件触发.将所提出的算法应用于Matlab仿真环境中进行仿真验证,仿真结果验证了所提出算法的有效性.
1