Flappy Bird.zipscratch2.0 3.0编程项目源文件源码经典游戏案例素材源代码Flappy Bird.zipscratch2.0 3.0编程项目源文件源码经典游戏案例素材源代码Flappy Bird.zipscratch2.0 3.0编程项目源文件源码经典游戏案例素材源代码Flappy Bird.zipscratch2.0 3.0编程项目源文件源码经典游戏案例素材源代码 1.合个人学习技术做项目参考合个人学习技术做项目参考 2.适合学生做毕业设计项目参考适合学生做毕业设计项目技术参考 3.适合小团队开发项目技术参考适合小团队开发项目技术参考
2025-04-25 08:11:20 300KB 编程语言
1
本资源包含 71 份大学生互联网创新创业项目计划书,涵盖 各行各业,包括 电商、人工智能、教育科技、医疗健康、社交平台、O2O 服务 等热门领域。计划书内容完整,包含 市场分析、商业模式、盈利策略、运营方案、风险评估 等核心要素,为创业者提供实用的参考。 适用人群: 适合 高校学生、创业者、创新创业大赛参赛者、商业策划人员,以及希望深入了解互联网创业模式的研究者和实践者。 能学到什么: 创业项目的策划思路——了解不同领域创业项目的核心逻辑和商业模式。 项目计划书的撰写技巧——学习如何构建一份完整的商业计划书,提高创业策划能力。 市场分析与商业模式设计——掌握如何分析市场需求,制定可行的商业模式和盈利方案。 创新思维与实践经验——借鉴优秀案例,提高自身创新能力,避免创业初期的常见误区。 阅读建议: 建议先通读多个行业的计划书,找到适合自己的创业方向,再结合自身想法进行修改和优化。同时,关注市场动态,不断调整和完善自己的创业方案。
2025-04-25 00:06:15 51.77MB 创新创业
1
dmall商城是一个基于SpringCloud构建的分布式电商系统,它的核心目标是实现高可用、高性能、模块化的电商服务架构。SpringCloud作为一个微服务开发的利器,提供了包括服务注册与发现、配置中心、熔断机制、负载均衡、API网关、分布式追踪等在内的一系列功能,使得构建大规模分布式系统的复杂度大大降低。 1. **SpringCloud简介** SpringCloud是基于Spring Boot进行快速构建云应用的工具集,它简化了分布式系统开发中的许多常见问题,如配置管理、服务发现、断路器、智能路由、微代理、控制总线、一次性令牌、全局锁、领导选举、分布式会话、集群状态等。 2. **SpringCloud组件解析** - **Eureka**:服务注册与发现,每个服务启动时都会向Eureka Server注册自己的信息,服务消费者通过Eureka获取服务提供者的信息。 - **Zuul**:API网关,负责统一处理请求路由、认证、限流、监控等,是系统对外的统一入口。 - **Hystrix**:断路器,防止服务雪崩,当某个服务出现故障时,Hystrix会打开断路器,后续请求将直接返回失败,避免了故障扩散。 - **Ribbon**:客户端负载均衡器,与Eureka配合,为服务消费者提供从服务列表中选择服务器的能力。 - **Spring Cloud Config**:配置中心,支持配置的实时更新,可以将配置存储在Git仓库或远程服务器上。 - **Spring Cloud Bus**:消息总线,用于服务间的通信,例如配置更改的广播。 3. **dmall商城架构设计** - **模块化设计**:dmall商城可能包含用户模块、商品模块、订单模块、支付模块等多个独立的服务,每个模块都可以单独部署和扩展,实现微服务化。 - **数据一致性**:利用分布式事务解决方案(如2PC、TCC、Saga)来保证跨服务的数据一致性。 - **服务治理**:通过Eureka实现服务的注册和发现,监控服务的状态,确保服务的高可用性。 - **安全性**:通过OAuth2实现用户授权,JWT进行用户身份验证,保证系统的安全性。 - **监控**:集成Prometheus和Grafana进行性能监控,及时发现并解决问题。 - **日志收集**:使用ELK(Elasticsearch、Logstash、Kibana)或Zipkin进行日志收集和追踪,便于排查问题。 4. **开发实践** - 使用Maven或Gradle作为构建工具,管理项目依赖。 - 使用SpringBoot的起步依赖,简化配置,快速启动服务。 - 使用Docker和Kubernetes进行服务的容器化和集群部署,提高资源利用率和可移植性。 - 利用Spring Cloud Stream和RabbitMQ或Kafka实现服务间的消息传递。 - 使用MyBatis或JPA作为持久层框架,处理数据库操作。 5. **测试与部署** - 单元测试和集成测试确保代码质量。 - 使用Git进行版本控制,持续集成工具如Jenkins自动化构建和部署。 - 在生产环境中,采用蓝绿部署或金丝雀发布策略,减少服务升级的风险。 dmall商城是一个典型的SpringCloud微服务架构示例,它充分展示了SpringCloud在构建大型分布式系统中的应用价值。通过学习和分析该项目,开发者可以深入理解微服务架构的设计原则和最佳实践,提升自身在分布式系统开发领域的专业能力。
2025-04-24 18:48:44 3.62MB
1
人脸识别技术是指通过计算机技术识别人脸特征,将其与数据库中存储的已知人脸特征进行比较,从而实现身份验证或识别的技术。随着计算机视觉和人工智能技术的不断进步,人脸识别技术已经成为一个重要的研究领域,并广泛应用于安全验证、智能监控、用户认证等多个场景。 本项目中所使用的`face_recognition`库是一个非常流行的开源人脸识别库,它基于深度学习技术,并结合了dlib和OpenCV这两个强大的计算机视觉库。`face_recognition`库的一个主要优势在于它的简单易用性,它提供了许多高级功能,比如人脸检测、特征提取以及人脸比对等,同时它的API设计得非常直观,让开发者即使是人脸识别的初学者也能够快速上手,实现复杂的人脸识别功能。 在人脸检测方面,`face_recognition`库可以自动识别图片中的多个面部,并返回面部的位置和大小信息。它还可以对检测到的人脸进行特征点定位,这些特征点是人脸上的关键部位,比如眼睛、鼻子和嘴巴等,为后续的特征提取和识别提供基础。 特征提取是人脸识别的核心步骤之一。`face_recognition`库通常会使用深度学习模型来提取人脸的特征向量,这些特征向量是人脸的独特表示,通常用于计算不同人脸之间的相似度。在人脸比对时,通过比较特征向量的差异来判断两个人脸是否属于同一个人。 本项目展示了一个完整的人脸识别应用开发流程。开发者需要首先安装`face_recognition`库以及其他必要的库(如OpenCV),然后通过编写代码来加载训练好的深度学习模型,实现人脸的检测和识别功能。此外,项目可能还会涉及到数据预处理、模型训练、系统界面设计等步骤。 值得注意的是,在使用人脸识别技术时,必须考虑隐私和伦理问题。因此,开发者在设计和部署人脸识别系统时,需要严格遵守相关的法律法规,确保个人隐私不被侵犯。此外,人脸识别技术的效果也受多种因素影响,比如光照条件、面部表情、姿态变化等,这些因素都可能对识别准确性造成影响,因此在实际应用中需要对这些条件进行适当控制或采用相应的方法进行处理。 人脸识别技术是一个不断发展的领域,随着技术的完善和应用的普及,它将在未来扮演更加重要的角色。而`face_recognition`库作为实现该技术的工具之一,为开发者提供了一个高效的平台,以较低的学习成本实现复杂的识别系统。
2025-04-24 15:27:56 1.45MB python 人脸识别
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
2025-04-24 12:46:52 4.19MB 毕业设计 课程设计 项目开发 资源资料
1
《天机学堂微服务项目2023:深入探索微服务架构与实践》 微服务作为现代软件开发的重要模式,已经逐渐成为企业级应用构建的标准。天机学堂,作为一个专注于技术教育的平台,推出了2023年的微服务项目,旨在帮助学员全面理解和掌握微服务的核心概念、设计原则以及实战技巧。 一、微服务基础理论 微服务架构是将大型复杂应用分解为一组小型、独立的服务,每个服务都可以在其自身的进程中运行,并通过轻量级通信机制(如RESTful API)相互协作。这种架构风格的优势在于提高可部署性、可扩展性和可维护性,同时促进了团队的敏捷性和创新力。 二、微服务设计原则 1. 单一职责原则:每个服务应专注于一项业务功能,避免过多职责混杂。 2. 去中心化治理:服务之间的管理分散,减少中央协调的复杂性。 3. 容器化与自动化:利用Docker等容器技术实现服务标准化,通过CI/CD流程实现快速部署。 4. 自动化测试:确保每个服务的独立测试,保证整体系统的质量。 三、微服务架构关键技术 1. Spring Cloud:Java领域的微服务框架,提供了服务发现、配置中心、负载均衡、熔断等多种功能。 2. Docker与Kubernetes:容器化技术与容器编排工具,用于服务的打包、部署和管理。 3. Istio与Linkerd:服务网格工具,提供更细粒度的服务管理和监控。 4. API Gateway:作为系统对外的统一入口,负责路由、认证、限流等功能。 四、天机学堂学习目标 根据提供的“天机学堂-学习目标.xlsx”文件,学员可以期望达到以下目标: 1. 理解微服务架构的原理与价值。 2. 掌握Spring Cloud或相关微服务框架的使用。 3. 学会使用Docker进行服务容器化。 4. 熟悉Kubernetes集群管理与服务部署。 5. 了解服务网格的基本概念和Istio、Linkerd的用法。 6. 掌握微服务间的通信方式和负载均衡策略。 7. 能够设计和实施微服务的持续集成和持续部署(CI/CD)流程。 8. 学习微服务测试和故障排查方法。 五、课程讲义-线上版.txt内容概述 该课程讲义详细阐述了微服务从理论到实践的各个层面,包括服务拆分策略、服务间的通信机制、服务注册与发现、熔断与降级策略、以及服务网格的概念。此外,还提供了实际案例分析,帮助学员将理论知识应用于实际项目。 总结来说,天机学堂的微服务项目2023致力于培养具备全面微服务技能的专业人才,通过系统学习,学员不仅可以掌握微服务的理论知识,还能在实践中提升解决问题的能力,为未来的软件开发职业生涯打下坚实的基础。
2025-04-23 18:21:50 13KB 微服务
1
实验1(JSP技术及JSP语法基础) 实验2(JavaBean组件程序设计) 实验3(Servlet基础) 实验4(客户请求的处理与服务器响应的生成) 实验5(MVC设计模式) 实验6(Spring应用基础) 实验7(Hibernate或MyBatis应用基础) 实验8(Struts2或SpringMVC框架) 实验9(JavaEE应用实例)
2025-04-23 17:29:15 204.12MB 项目报告
1
本次实验是做一个基于番茄叶数据的植物病虫害AI识别项目,掌握番茄病虫害分类模型的加载、掌握番茄病虫害分类模型、进行推理预测方法握了病虫害智能检测项目的从数据采集到卷积神经网络模型构建,再到使用采集的数据对模型进行训练,最后使用模型进行实际的推理完整的开发流程。 任务1:常见数据采集方法( kaggle植物病虫害开源数据集的使用番茄病虫害分类数据标注) 任务2:导入数据集( 病虫害图片导入实验、tensorflow番茄病虫害模型训练前数据预处理) 任务3:模型选择与搭建(深度学习神经网络、keras高级API的使用、keras构建分类卷积神经网络模型) 任务4:模型训练与模型评估(基于预训练模型进行模型微调训练、tensorflow保存模型) 任务5:模型加载与预测( tensorflow评估番茄病虫害模型、使用tensorflow对番茄病虫害模型进行番茄病虫害情况预测)
2025-04-23 17:20:46 407.69MB tensorflow 人工智能 机器人技术 数据采集
1
【网络爬虫基础概念】 网络爬虫,也称为网页蜘蛛或网络机器人,是一种自动化程序,用于遍历互联网上的网页,抓取所需数据。这个过程通常包括请求网页(HTTP/HTTPS)、解析HTML、提取数据和存储数据。在Python中,网络爬虫的实现得益于丰富的库,如requests用于发送HTTP请求,BeautifulSoup或lxml用于解析HTML,以及pandas用于数据存储和处理。 【Python在爬虫中的应用】 Python是网络爬虫开发的热门语言,因为它语法简洁,拥有众多适用于爬虫开发的库。例如,`requests`库可以方便地发送HTTP请求,获取网页内容;`BeautifulSoup`库则能解析HTML和XML文档,帮助我们提取有用信息;`Scrapy`是一个完整的爬虫框架,提供更高级的功能,如并发处理、中间件、项目结构管理等。 【爬虫实战与项目分析】 嵩天老师的课件聚焦于Python爬虫实战,这意味着课程将涵盖从简单网页抓取到复杂网站的数据提取。项目分析部分可能涉及如何识别和处理反爬虫策略,如验证码、IP限制和User-Agent检查。此外,可能还会讲解如何使用代理IP、动态库如Selenium进行浏览器模拟,以及如何处理JavaScript渲染的网页。 【爬虫入门指南】 对于初学者,理解HTTP协议的基础知识至关重要,包括GET和POST请求的区别,以及HTTP头的作用。学会使用开发者工具查看网络请求,能帮助理解爬虫如何与服务器交互。此外,了解HTML和CSS选择器也是爬虫必备技能,它们帮助定位网页上的目标数据。 【Python爬虫实战】 实战环节可能包括编写简单的爬虫脚本,如爬取新闻网站的最新文章、电影评分网站的用户评价,或者电商平台的商品价格。这些项目将锻炼你处理数据的能力,包括数据清洗、去重和分析。同时,会涉及到错误处理和异常捕获,确保爬虫在遇到问题时能够稳定运行。 【道德和法律法规】 在进行网络爬虫实践时,一定要遵守相关法律法规,尊重网站的Robots协议,不进行过度抓取,避免对目标网站造成过大的访问压力。同时,保护个人隐私,不得非法获取和使用个人信息。 【学习资源】 嵩天老师的课件涵盖了网络爬虫的重要知识点,结合书籍和其他在线资源,如Stack Overflow、GitHub上的开源爬虫项目,可以加速学习进度,提高爬虫开发能力。 综上,通过学习嵩天老师的课件,你将系统掌握Python网络爬虫的基础和实战技巧,从入门到进阶,逐步成长为一名熟练的网络爬虫开发者。同时,理解并遵循相关法规和道德规范,使你的爬虫技术应用更加得当。
2025-04-23 12:21:33 111.6MB python 爬虫实战 爬虫入门
1
在深度学习领域,图卷积神经网络(GCN)是一种特别适合处理图结构数据的模型。它通过在图的节点上施加卷积操作,能够提取和利用节点的局部特征,从而在各种图结构数据上取得优秀的表现。GCN广泛应用于社交网络分析、生物信息学、分子建模等多个领域。 ASTGCN(Attention Spatial Temporal Graph Convolutional Network)则是图卷积网络的一种变体,它在传统GCN的基础上引入了注意力机制和时空特征处理,以提高模型对时间序列数据和空间关系数据的处理能力。通过注意力机制,ASTGCN能够更加智能地识别并赋予图数据中不同节点或边不同的权重,从而提升对数据特征的学习效果。这种模型特别适合处理时空数据,例如城市交通流量预测、天气预测等,因为这些数据通常包含时间和空间两个维度的依赖关系。 GitHub作为一个开源社区,汇集了大量来自全球的研究者和开发者,他们共同分享代码、讨论问题,并且协作解决问题。在这里,许多深度学习领域的项目代码公开,方便研究人员和学习者理解和复现先进的算法。当作者发现一个项目有学习和应用价值时,他们可能会基于自己的理解对原始代码进行修改和优化,使其结构更加清晰、注释更加详尽,以便于其他初学者或研究者学习和使用。这样不仅能够促进知识的传播,还能推动技术的交流和进步。 对于初学者来说,学习ASTGCN这样复杂的模型可能会有一定的难度。但是,通过一个结构化、有注释的完整项目,初学者能够更好地理解模型的工作原理和代码实现方式。这种项目的优点在于,它不仅提供了理论知识,还提供了实践操作的机会,使学习者能够在实践中掌握如何从数据预处理开始,到模型训练、调试再到模型评估的全过程。 由于本段内容是针对标题中提到的“ASTGCN完整项目(修改版)”进行详细解析,无法提供具体的文件名称列表。然而,可以推测一个针对该主题的项目文件结构可能包括但不限于:模型代码(包括数据加载、预处理、网络构建、训练和测试等部分),文档(解释模型结构和数据流程),甚至可能包括使用说明和示例数据集。这样的文件结构有助于学习者一步步跟随项目前进,从而深入理解ASTGCN模型的每一个细节。
2025-04-22 15:31:28 479.59MB 深度学习 图卷积神经网络 项目
1