运动人体检测和行为识别涉及广泛,包括人工智能、计算机视觉、模式识别等,人体行为识别在医疗、商业、军事中具有重要的应用价值,为探究良好的人体行为识别方法,本文引入傅里叶-隐马尔可夫模型进行相关分析,在人体行为序列图像的识别过程中,需要了解有关人体行为二值图像的轮廓,然后采取科学的方式进行傅里叶变换,接着进行向量转化,形成观察符号序列,将矢量量化向特征向量变化,便于提取人体轮廓的特征,进行后续的应用研究。最后对人体的行为进行识别,采用隐马尔大夫分类器。利用傅里叶-隐马尔科夫模型进行人体识别,能够有效提高人体行为识别率,本次测试单个行为的识别中平均识别率达到94%,要进行深入探究,进行复杂环境复杂动作的识别,促进相关工作的改进。
1
对主要聚类算法进行实现:基于划分的聚类算法,基于密度的聚类算法,基于层次的聚类算法。并且重点实现“基于快速搜索与寻找密度峰值的聚类”算法,并对其进行改进:自动获取聚类中心数
2021-12-15 16:58:43 10KB 聚类算法 K-Means dbsacn 图像特征
1
针对ORB算法特征匹配精度低的缺陷,结合金字塔光流特性,提出一种优化ORB特征匹配的方法。首先,采用区域分块法对待匹配图像进行处理,挑选出最佳匹配子块,缩小无效匹配区域;接着,对子块提取ORB关键字并计算匹配描述子得到粗匹配点对,采用金字塔光流法追踪ORB特征点,求解特征点的运动位移矢量,以此剔除粗匹配部分错误的匹配对;最后,采用随机采样一致算法进一步剔除冗余匹配点,获取更为精准的匹配对。实验结果表明,本文优化的ORB算法可以很好地满足实时性和精度的要求,特征匹配的平均耗时为原ORB算法的87%左右,且平均匹配率达98%以上。
2021-12-12 19:44:31 3.19MB 图像处理 特征匹配 区域分块 ORB
1
我自己实现的灰度共生矩阵提取结肠癌图像特征,并利用计算机辅助诊断的方法SVM分类Matlab代码。
2021-12-11 16:48:29 2KB 灰度共生矩阵 SVM 结肠癌
1
输入图像后,运行函数实现基于matlab的灰度图像特征点匹配。
2021-12-09 21:29:10 929B 特征点、matlab
1
ORB(Oriented FAST and Rotated BRIEF)是一种快速特征点提取和描述的算法。这个算法是由Ethan Rublee, Vincent Rabaud, Kurt Konolige以及Gary R.Bradski在2011年一篇名为“ORB:An Efficient Alternative to SIFTor SURF”的文章中提出。ORB算法分为两部分,分别是特征点提取和特征点描述。特征提取是由FAST(Features from Accelerated Segment Test)算法发展来的,特征点描述是根据BRIEF(Binary Robust IndependentElementary Features)特征描述算法改进的。
2021-12-07 19:06:33 914KB ORB 图像特征
1
机器学习基于深度学习的图像特征提取
2021-12-02 11:22:11 1.87MB 机器学习 深度学习的 图像特征提取
1
遮挡情况下水尺图像特征加权学习识别算法.pdf
1
双峰和多峰的直方图
2021-11-24 21:30:25 2.21MB 分割与提取
1
基于MATLAB的树叶图像特征分类识别,图像分析处理 分割 特征提取 分类识别等亲测可用, 谢谢支持。
2021-11-19 11:28:00 1.67MB 图像特征识别
1