开发环境: 硬件(核心板芯片:STM32F103ZET6;开发板:100ask_STM32F103_V12;扩展板:ESP8266模块、OLED屏幕、风扇;) 软件:基于FreeRTOS+HAL库 开发工具:MDK5、STM32CubeMX 实现功能:开发板通过wifi连接云端服务器,用户通过微信小程序向云端服务器发送指令,入网后的开发板根据云端接收到的指令控制LED灯、风扇等设备。
2025-05-17 19:52:10 850KB STM32F103 智能家居控制系统 FreeRTOS
1
《基于S7-1200 PLC的狭窄隧道汽车错峰双向行车控制系统优化设计》,基于S7-1200 PLC的隧道智能双向行车控制系统设计与实现:优化狭窄隧道交通流管理策略,《基于S7-1200PLC的狭窄隧道汽车双向行控制系统设计》 一、设计任务书 1)无人值班指挥,能错开时序双向行车。 2)按启动按钮,A口绿灯亮,B口红灯亮,信号灯控制系统开始工作。 3)两道口绿灯不能同时亮,如果万一同时亮,系统停止工作并报警。 4)从A口绿灯开始亮时计算,在持续5s内如果无车辆进入A口,则A口绿灯闪烁2后熄灭且红灯亮,而B口红灯熄灭绿灯亮。 同样,如果B口绿灯持续亮5s内无车辆进入B口,则B口绿灯闪烁2s熄灭红灯亮,而此时A口绿灯亮。 这是两道口均无车进入隧道的要求。 5)当A口绿灯亮时,从A口进入第一辆车算起,B口红灯持续亮90s,同时A口绿灯持续亮20s,接着闪烁2s后熄灭,红灯亮68s(B口红灯仍亮着)。 即待从A口进入隧道内的汽车全部开出后,B口才能进车。 6)当B口绿灯亮时,从B口进入第一辆车算起,A口红灯持续亮90s,B口绿灯持续亮20s,接着闪烁2s后熄灭,此后两道口红灯同时亮68s。 即
2025-05-17 19:39:22 229KB xbox
1
内容概要:本文围绕智能评阅算法的效果展开综合评价,背景为中国将人工智能确立为核心发展领域,特别是在教育考试的人才选拔方面,提出了智能评阅系统的创新模式。文章详细介绍了某实验室采用“一人工+双AI”协同机制进行评分的研究成果,即通过两种智能算法背对背评分并与人工评分交叉验证,以确保评分质量和效率。基于附件提供的具体数据,要求建立数学模型来分析不同评阅方式的数据分布特点,构建智能评阅算法的评价指标体系并设计综合评价模型,同时针对不同学科维度展开评阅效果的对比分析。最后,根据给定的误差阈值等条件,设计并评估了两类人工智能算法的应用方案。; 适合人群:对教育信息化、智能评分系统感兴趣的教育工作者、研究人员以及相关领域的研究生或高年级本科生。; 使用场景及目标:①理解智能评阅系统的最新进展及其在教育领域的应用;②掌握如何基于实际数据构建评价模型和指标体系;③学习如何设计并评估智能评阅算法的具体实施方案。; 其他说明:本文不仅提供了理论指导,还附带了具体的数据集(附件1、2、3),便于读者进行实证研究和模型测试。建议读者在学习过程中结合附件数据进行实践操作,以加深对智能评阅算法的理解。
2025-05-17 16:54:55 17KB 人工智能 教育技术 数学建模
1
java项目之高校智能排课系统设计源码java项目之高校智能排课系统设计源码java项目之高校智能排课系统设计源码java项目之高校智能排课系统设计源码java项目之高校智能排课系统设计源码java项目之高校智能排课系统设计源码java项目之高校智能排课系统设计源码
2025-05-17 16:21:16 9.02MB java 源码 java项目
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2025-05-17 16:18:51 7.04MB python 人工智能 ai
1
在当今时代,人工智能已经成为科技发展的一个重要方向,而深度学习是实现人工智能的重要技术之一。在深度学习领域中,一个不可或缺的环节就是使用大量的数据集进行训练,以此来提高模型的准确性和鲁棒性。其中,MNIST数据集是一个非常著名的手写数字数据集,它包含了成千上万的手写数字图像,这些图像被用于训练和测试各种图像处理系统。而TensorFlow是由Google开发的一个开源的机器学习框架,它为研究人员和开发者提供了一个强大、灵活的平台来构建和部署深度学习模型。 标题中的“西电网信院人工智能实验_tensorflow_mnist.zip”表明,这个压缩包文件是一份来自西部电网信息学院的人工智能实验项目,主要内容是关于TensorFlow框架在MNIST数据集上的应用。从文件的命名方式来看,该项目可能是一个教学实验,旨在让学生通过实践操作来掌握TensorFlow框架的使用方法,并通过解决实际问题来加深对深度学习的理解。 在深度学习中,MNIST数据集通常被用作训练卷积神经网络(CNN)的首个实验,因为它的数据量适中,问题相对简单,非常适合初学者和研究者入门学习。该数据集包含60,000个训练图像和10,000个测试图像,每个图像都是28×28像素的灰度图,并且每个图像都标记了相应的数字(0-9)。使用这个数据集训练得到的模型,其性能指标通常包括分类准确率、交叉熵损失等。 TensorFlow框架提供了丰富的API,可以方便地进行数据预处理、模型构建、训练和评估等工作。在MNIST数据集上应用TensorFlow,不仅可以加深对模型构建和训练流程的理解,还可以掌握到如何使用TensorFlow提供的高级功能,例如数据集的批处理、模型的保存与恢复等。这些技能对于未来深入研究深度学习和人工智能技术具有重要意义。 此外,该压缩包文件中包含的“tensorflow_mnist-main”目录,可能包含了一些关键的实验文件和代码,例如数据加载脚本、模型定义文件和训练脚本等。通过这些文件,学生或研究人员可以按照实验指导书或课程要求,逐步搭建起从数据预处理到模型训练和评估的整个流程,从而更好地理解TensorFlow框架的工作原理和深度学习模型的训练过程。 该压缩包文件是围绕着深度学习中一个重要的基础任务——手写数字识别所设计的人工智能实验项目。它不仅为学习者提供了一个实践操作的机会,还通过TensorFlow框架的使用,让学生们在实践中深入理解深度学习的核心概念,为今后更复杂的应用打下坚实的基础。
2025-05-17 16:12:36 11.07MB
1
:“jsp高校智能排课系统设计(源代码+论文).rar”是一个与计算机专业相关的毕业设计项目,它采用JavaServer Pages (JSP) 技术来构建一个智能化的高校课程安排系统。JSP是一种动态网页开发技术,允许开发者在HTML或XML文档中嵌入Java代码,以实现服务器端的业务逻辑处理。 :“计算机专业毕业设计案例,仅供参考”表明这个项目是针对计算机科学与技术专业的学生,旨在帮助他们理解和掌握实际项目开发的过程。作为毕业设计,它不仅要求实现功能,还要求展示良好的编程规范、文档编写能力和问题解决能力。此案例可供其他学生参考学习,了解如何将理论知识应用到实际工程实践中。 【知识点】: 1. **JSP基础**:JSP的基本语法,包括脚本元素(Scriptlets、Expressions、Declarations)、指令(Directives)、动作(Actions),以及JSP页面生命周期和转换过程。 2. **Servlet技术**:由于JSP通常与Servlet配合使用,了解Servlet的生命周期、请求和响应对象,以及如何在JSP和Servlet之间进行数据传递。 3. **MVC设计模式**:智能排课系统可能采用了Model-View-Controller架构,其中Model负责业务逻辑,View处理用户界面,Controller协调两者交互。 4. **数据库设计**:系统可能涉及教师、课程、教室、时间表等多个实体,需要设计合理的数据库模型,包括关系模型、ER图和SQL语句。 5. **智能算法**:排课系统的“智能”体现在自动排课算法上,可能涉及到贪心算法、回溯法、遗传算法等优化算法,用于解决课程冲突、教室资源分配等问题。 6. **用户界面设计**:用户体验是系统的重要组成部分,需要考虑交互设计和视觉设计,使用户能够方便地查看和管理课程。 7. **权限管理**:系统可能有不同角色(如管理员、教师、学生),需要实现权限控制,确保数据安全和操作合规。 8. **测试与调试**:项目开发完成后,需要进行功能测试、性能测试和兼容性测试,确保系统稳定可靠。 9. **文档编写**:除了源代码,项目还包括论文部分,这要求开发者能够清晰阐述系统的设计思路、技术选型、实现过程和效果评估。 10. **版本控制**:源代码管理工具如Git的应用,可以帮助团队协作和版本管理,保证代码的可追踪性和完整性。 这个项目的完整实现将涵盖众多计算机科学的理论和实践知识,对于提升学生的编程技能、问题解决能力和团队合作经验有着重要的作用。通过分析和研究这样的案例,学生可以加深对软件开发流程的理解,并为未来的职业生涯打下坚实的基础。
2025-05-17 15:52:20 9.54MB 计算机专业 毕业设计
1
在当前的信息化时代,邮件作为商业和个人沟通的重要手段,其处理效率直接影响着工作流程的效率和质量。而邮件自动化的出现,旨在通过人工智能技术提升邮件处理的智能化水平,从而解放人力,提高效率。本实践专注于利用LLM(Large Language Models)与多智能体协作技术,结合CrewAI和DeepSeek平台,探讨邮件自动化的实际应用。 CrewAI和DeepSeek是两种不同的人工智能框架,它们在邮件自动化场景中扮演着至关重要的角色。CrewAI作为一款多智能体协作平台,能够提供一个集成的环境,让多个智能体协同工作,实现复杂任务的分解和协作处理。在邮件自动化中,CrewAI能够协调多个智能体,对邮件内容进行深度理解和分析,从而实现邮件的分类、回复、转发等多种功能。 DeepSeek则是一种深度学习和搜索技术的融合产物,它能够通过深度学习对邮件内容进行语义理解,并通过高效的搜索算法快速定位相关信息。在邮件自动化实践中,DeepSeek可以用于提取邮件中的关键信息,如附件、联系人信息和主题内容等,提高邮件处理的准确性和速度。 LLM(Large Language Models)是指那些具有大量参数和大规模训练语料的语言模型,它们在理解和生成自然语言方面表现出色。在邮件自动化中,LLM可以被训练来理解用户邮件的意图,并生成恰当的回复内容。同时,LLM还能够协助智能体在处理邮件时进行复杂决策,使得邮件自动化系统能够更加智能和自适应。 LLM、CrewAI与DeepSeek三者的结合,构建了一套完整的邮件自动化解决方案。这套系统不仅可以自动分类邮件,还能自动生成响应,甚至在必要时通过协作机制,让不同的智能体共同完成复杂的邮件处理任务。这种多智能体协作模式,能够极大地提升邮件处理的效率和质量,为人们提供了一个高效、智能的邮件管理新体验。 通过对CrewAI智能体平台的深入应用,我们可以让邮件自动化处理过程更加灵活和高效。智能体可以针对不同的邮件类型和内容,采取不同的处理策略,例如对于简单的确认邮件可以实现即时自动回复,而对于复杂的问题或者需要团队协作的邮件,则能够通过智能体间的协作机制,确保邮件被正确处理,不会遗漏重要信息。 在具体的技术实现层面,邮件自动化实践通常涉及多个步骤,包括但不限于:邮件的接收与预处理、意图识别与分类、智能回复与处理、反馈学习与系统优化。每一环节都需要精细的算法和模型设计,以保证自动化邮件处理的准确性和可靠性。 此外,邮件自动化解决方案还必须考虑到安全性和隐私保护的问题。在处理邮件内容时,系统需要确保敏感信息得到妥善保护,并且只有授权用户才能访问相关邮件数据。这意味着在邮件自动化系统中,还需要集成一定的数据加密和访问控制机制,以符合现代网络安全的要求。 邮件自动化作为一种前沿技术,其实践应用前景十分广阔。随着LLM、CrewAI与DeepSeek等技术的不断发展和完善,我们有理由相信,未来的邮件处理将更加自动化、智能化,极大地提高工作效率,并对现代工作模式产生深远的影响。
2025-05-16 19:51:50 145.3MB 人工智能 Agent
1
人脸识别技术在智能化小区门禁管理系统的应用,利用Python编程语言作为开发工具,结合现代数据库技术,构建了一个集成了人脸检测、识别、信息管理与权限控制等功能的高效小区安全系统。本系统通过管理员和用户两个角色的交互,实现了对小区出入权限的精准管理。 在管理员端,首先提供了一个简洁易用的注册登录界面,保障了系统的安全性和权限的分配。成功登录后,管理员可以进行账号管理操作,包括添加新管理员账号和删除不再需要的账号。系统确保已删除的账号不能重复使用,从而维护了账号管理的严密性。管理员还可以管理用户数据,查看用户进出小区的时间、采集的人脸数据以及其他基本信息。对于用户数据,管理员可进行单条的增加和删除操作,也可以执行批量的增加和删除,大大提高了数据管理的效率。此外,管理员能够执行用户数据的采集功能,通过输入用户基本信息并调用摄像头自动采集人脸图片,方便快捷地为用户建立人脸档案。 对于用户而言,系统提供了直观的人脸识别界面。用户到达门禁时,系统会通过摄像头实时识别其面部特征,如果识别成功,系统会以红框标出并显示用户的名字缩写;未录入系统的用户则显示为“unknow”,并且不允许同时识别多个用户,确保了识别过程的准确性和顺序性。如果被系统标记为拉黑的用户尝试进入,门禁会发出响铃警报,并记录下这次事件的数据。用户通过认证后,系统会显示窗口信息和语音提示告知“门已开”,五秒后窗口信息自动消失,同时系统记录用户的进入数据。若未录入信息的用户尝试进行识别,系统同样会弹出提示该用户未在系统内,并发出响铃,五秒后窗口信息消失。 整个系统运用了人脸检测和识别算法,将识别结果与数据库中存储的人脸模板进行比对,判断用户的合法性。系统采用的数据库技术能够高效地存储、管理和检索大量的用户数据。管理员可以对这些数据进行操作,而系统会自动记录每一次用户的进出数据,为小区的安全管理提供了详细的信息支持。 此外,系统还具备良好的用户体验设计,包括对不同情况的用户提供了清晰的界面提示和声音反馈,确保用户能够快速理解当前的门禁状态,提升进出效率。系统的设计考虑到了实际运行中可能遇到的各种情况,比如在高峰时段如何处理多用户连续识别、异常情况下如何快速响应等问题,系统均提供了相应的解决方案。 在技术实现方面,本系统主要依赖于Python语言的易用性和强大的社区支持,使用了如OpenCV库进行图像处理,利用了scikit-learn或TensorFlow等机器学习库构建和优化人脸识别模型。数据库方面,可以使用SQLite、MySQL、MongoDB等不同类型的数据库来满足不同的数据存储需求。整个系统的开发流程遵循软件工程的原则,保证了代码的可读性、可维护性和扩展性。 该基于Python的人脸识别智能化小区门禁管理系统,不仅提高了小区的安全管理水平,而且通过高效的人脸数据处理和用户友好的交互设计,提升了用户体验,为现代智能小区的安全管理提供了创新的解决方案。
2025-05-16 16:11:11 12KB python 毕业设计
1
内容概要:本文介绍了基于51单片机的太阳能LED路灯智能控制器的设计与实现。该控制器能够对12V蓄电池进行自动识别和科学管理,支持光控与时控两种工作模式,并具备过流、短路保护功能。文中详细描述了系统的原理图、工作流程、保护机制以及仿真实验。此外,还提供了完整的仿真工程文件、源代码工程文件、原理图工程文件、流程图和物料清单,方便读者理解和复现。 适合人群:电子工程专业学生、嵌入式系统开发者、硬件工程师。 使用场景及目标:适用于需要设计和实现智能照明控制系统的研究人员和技术人员,旨在帮助他们掌握51单片机的应用技巧,提高太阳能LED路灯的智能化管理水平。 其他说明:本文不仅提供了详细的理论讲解,还包括丰富的实践资源,如仿真文件和源代码,有助于读者深入理解并应用于实际项目中。
2025-05-15 19:00:05 1.37MB
1