ENVI遥感图像监督分类 包含练习数据
2022-10-03 09:05:03 152.87MB 遥感 envi 监督分类
1
针对每个机器学习经典模型详细的逻辑讲解 逐步的公式推导,step by step,让你面试时手推无障碍 完整的笔记资料,包括推导理解、 示意图等等
1
编写初衷:监督作者本人的生活规律 后续1:会陆续用博文形式更新编写过程方便大家自行改写 后续2:会持续更新和添加功能
2022-09-22 15:03:36 26KB vba excel 自律 阅读
1
我们做深度学习中,到采用的训练方案是全监督的方式,这种全监督的方式,在基本的分类任务当中数据打标签的难度还好,但是在一些更多复杂的深度学习任务中,label的获取就有些困难了。 比如在图像分割领域当中,像素级的标签获取起来费事费力(labelme用起来还挺累的),有没有这么一种算法可以通过分类的标签衍生出像素级的标签,答案是有的。
2022-09-20 23:38:01 1KB 弱监督 图像分割 人工智能
1
高维数据聚类 (HDDC) 工具箱包含用于高维数据的高效无监督分类器。 该分类器基于适用于高维数据的高斯模型。 参考:C. Bouveyron、S. Girard 和 C. Schmid,高维数据聚类、计算统计和数据分析,2007 年
2022-09-17 16:48:22 40KB matlab
1
混合主成分分析(dPCA) dPCA是一种线性降维技术,可自动发现并突出显示复杂的人口活动的基本特征。 人口活动被分解为几个混合的部分,这些部分捕获了数据中的大多数方差,并突出了人口对各种任务参数(如刺激,决策,奖励等)的动态调整。 D Kobak + ,W Brendel + ,C Constantinidis,CE Feierstein,A Kepecs,ZF Mainen,XL Qi,R Romo,N Uchida,CK Machens 神经人口数据的混合主成分分析eLife 2016, //elifesciences.org/content/5/e10989 (arXiv链接:
1
使用 MATLAB 对传感器数据进行基于自动编码器的异常检测 该演示重点介绍了如何使用基于自动编码器的半监督机器学习技术来检测传感器数据中的异常(三缸泵的输出压力)。该演示还展示了如何通过自动代码生成将经过训练的自动编码器部署在嵌入式系统上。自动编码器的优点是可以训练它们用代表正常操作的数据检测异常,即您不需要来自故障的数据。 # 自动编码器基础 自编码器基于神经网络,网络由编码器和解码器两部分组成。编码器将 N 维输入(例如一帧传感器数据)压缩为 x 维代码(其中 x < N),其中包含输入中携带的大部分信息,但数据较少。因此,编码器有点类似于主成
1
在这项工作中,提出了一种用于裂纹检测的深度监督网络。在该网络中,DeepLab被用作密集特征提取器,以获得多尺度卷积特征。采用了一种新的多尺度特征融合模块。 该模块背后的主要动机是解决U形结构中具有语义信息的深层特征在逐层融合过程中被稀释的问题。深度监督学习用于多尺度特征的集成直接监督。此外,采用加权交叉熵损失函数来解决路面裂缝数据的样本不平衡问题。为了进行性能评估,我们分别在三个公共裂缝数据集上进行了实验。实验结果表明,我们的方法优于最先进的裂纹检测方法。
2022-09-04 20:05:31 15.32MB 强化学习
1
本文对基于深度学习的自监督一般性视觉特征学习方法做了综述。首先,描述了该领域的动机和一些专业性术语。在此基础上,总结了常用的用于自监督学习的深度神经网络体系结构。接下来,回顾了自监督学习方法的模式和评价指标,并介绍了常用的图像和视频数据集以及现有的自监督视觉特征学习方法。最后,总结和讨论了基于标准数据集的性能比较方法在图像和视频特征学习中的应用。
2022-08-16 01:47:50 23.57MB self_supervised_
1
海豹 ⠀ ⠀⠀ 半监督图分类的PyTorch实现:分层图透视(WWW 2019) 抽象的 节点分类和图分类是两个图学习问题,它们分别预测节点的类标签和图的类标签。 图的节点通常代表现实世界的实体,例如,社交网络中的用户或蛋白质-蛋白质相互作用网络中的蛋白质。 在这项工作中,我们考虑一个更具挑战性但实际上有用的设置,其中节点本身是一个图实例。 这导致了分层图的透视图,这种透视图出现在许多领域中,例如社交网络,生物网络和文档收集。 例如,在社交网络中,一群具有共同兴趣的人形成一个用户组,而许多用户组则通过交互或普通成员相互连接。 我们在层次图中研究节点分类问题,其中“节点”是图实例,例如上述示例中的用户组。 由于标签通常受限于实际数据,因此我们通过谨慎/主动迭代(或简称SEAL-C / AI)设计了两种新颖的半监督解决方案,称为半监督图分类。 SEAL-C / AI采用了一个迭代框架,该框
1