最近在学习STM32单片机 本次博文想记录一下32单片机连接霍尔传感器来测量直流电机转速。 材料准备: 1.单片机:STM32L052K8* 2.霍尔传感器 3.直流电机 电路图如下: 其中,单片机和直流电机不用介绍,下面介绍一下霍尔传感器。 主要想说一下霍尔传感器的引脚怎么去看,如下图看: 其他一些性能参数暂时不需要管,一般情况肯定够用的。 下面讲一下测转速的实现原理。 霍尔传感器检测到金属时,会出现低电平,当金属块离开时会变成高电平,就是这样循环往复的记录电机转动的圈数。 实现方式用定时器实现,有两种实现方法,这里记录一下: 方法一: 接线: 电机接在PA4口 霍尔传感器接在PA6口
2023-03-30 23:02:26 259KB 传感器 学习 电机
1
由于无刷直流电机调速系统具有非线性、多变量、不确定时变系统等特点,在高控制精度和快响应速度的条件下,传统的PID控制方法已经不能满足无刷直流电机调速系统的要求,如果其中的参数变化超过一定范围,整个控制系统会出现不稳定。在分析无刷直流电机(BLDCM)的数学模型并将其简化的基础上,提出了一种无刷直流电机的预测函数控制(PFC)策略,并进行了Matlab仿真试验。该BLDCM系统采用双闭环调速,速度环中采用PFC控制,计算得到参考电流值作为电流环的输入,电流环采用离散PI控制,由滞环电流跟踪型PWM逆变器的原理实现电流控制。仿真试验结果显示,这种无刷直流电机调速系统可以取得良好的控制效果。
1
1 引言 直流电机监控系统是机电产品中的重要环节,其控制性能反映了机电设备的控制质量。灵活、方便、准确、实时的监控需要对电机的转速信号进行测量和处理,以达到控制转速的目的。 2 系统总体设计 ARM/DSP/FPGA虽精度高、速度快,但设计复杂,价格也一直居高不下。本系统采用一种适用于小容量存储器单片机(如PIC系列)系统且功能强大的RTOS—Salvo。无需扩展大量的RAM和ROM,并且实时性好。大大节省了成本。系统选用PC机作为上位机,运用API函数及MSCOMM控件实现计算机通信。PIC16F877A单片机及外围电路组成一个单片机系统。作为下位机。电路设计包括PWM驱动、CCP捕
1
在自动控制中,计算机控制一直成为人们的关注焦点,但控制的实现还得借助电子控制器来实现,其中电机的驱动是一个最为普遍的问题。本文所给出的直流电机驱动电路集锦相当直观,但却各具特色,可用于不同的控制需求。  直流电机的驱动比较简单,既可通过继电器或功率晶体管驱动,也可利用可控硅或功率型MOS场效应管驱动。为了适应不同的控制要求(如电机的工作电流、电压,电机的调速,直流电机的正反转控制等),下面介绍几种电路,满足这些要求。 图1电路利用了达林顿晶体管扩大电机驱动电流,图示电路将BG1的5A扩流到达林顿复合管的30A,输入端可用低功率逻辑电平控制。 上述电路采用的驱动方式属传统的单臂驱动,它只能使电机单向运转,双臂桥式推挽驱动可使控制更为灵活。图2为一款单端逻辑输入控制的桥式驱动电路,它控制电机正反转工作,这个电路的另一个特点是控制供电与电机驱动供电可以分开,因此它较好地适应了电机的电压要求。  图3也为单端正负电平驱动桥式电路,它采用双组直流电源供电,该电路实际是两个反相单臂驱动电路的组合。图3也能控制电机的正反转。  图4电路以达林顿管为基础驱动电机的正反转,它由完全
2023-03-26 22:37:28 482KB 直流电机 驱动电路  文章 硬件设计
1
针对无刷直流电动机的控制系统,设计了以TMS320F2812 DSP 为核心的数字控制器,采用速度环和电流环双 闭环的控制策略,给出了系统设计框图和部分外围电路硬件设计图; 介绍了基于Simplorer 的无刷直流电动机系统建 模仿真的实现过程,仿真结果表明: 系统具有良好的动静态性能,所提出控制策略实现简单且具有实用价值。 关键词: 无刷直流电动机; TMS320F2812; Simplorer
2023-03-26 11:42:16 1.47MB 无刷直流电机 仿真
1
matlab开发-无刷直流电机风机负荷应用数学模型及闭环速度控制。无刷直流电动机在风机负荷应用中的闭环调速
2023-03-21 16:57:22 120KB 未分类
1
附件内容分享的是基于STM32F103 BLDC直流无刷霍尔电机驱动板配套资料、原理图、MDK源码等。 STM32 无感无刷直流电机开发板实物截图: STM32 无感无刷直流电机开发板PCB截图:
2023-03-21 00:18:34 9.28MB 直流电机 MDK源码 电路方案
1
摘要:以N沟道増强型场效应管为核心,基于H桥PWM控制原理,设计了一种直流电机正反转调速驱动控制电路,满足大功率直流电机驱动控制。实验表明该驱动控制电路具有结构简单、驱动能力强、功耗低的特点。   1引言 长期以来,直流电机以其良好的线性特性、优异的控制性能等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。特别随着计算机在控制领域,高开关频率、全控型第二代电力半导体器件(GTR、GTO、MOSFET.、IGBT等)的发展,以及脉宽调制(PWM直流调速技术的应用,直流电机得到广泛应用。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用N沟道増强型场效应管构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,可应用PWM技术实现直流电机调速控制。   2直流电机驱动控制电路总体结构 直流电机驱动控制电路分为光电隔离电路、电机驱动逻辑电路、驱动信号放大电路、电荷泵路、H桥功率驱动电路等四部分,其电路框图如图1所示。   由图可以看出,电机驱动控制电路的外围接口简单。其主要控制信号有电机运转方向信号Dir电机调速信号PWM及电机制动信号 Brake,vcc为驱动逻辑电路部分提供电源,Vm为电机电源电压,M+、M-为直流电机接口。
2023-03-18 15:53:08 735KB 场效应管PWM控制直流电机
1
针对某种大牵引力AGV轮毂电机,设计了一种永磁无刷直流电机驱动器。在三相全桥逆变上采用更高频率的GaN开关管,通过提高开关频率以减少电机的损失和扭矩波动。控制电路以TMS320F28069芯片为基础,采用了一种FOC控制算法,详细介绍了磁场定向控制理论原理,并在此基础上设计了无刷直流电机无位置传感器系统,通过滑模观测器法来估算转子位置和转速,并对电机的驱动电路和采样电路进行了分析。本次设计的驱动器具有体积小、散热好、适用于高频的特点,能够很好的适用于大牵引力AGV小车。
1
CT107D单片机综合训练平台蓝桥杯单片机开发程序,此代码是本人参加蓝桥杯比赛前训练所写!
2023-03-16 22:16:55 27KB 蓝桥杯 CT107D单片机
1