滚动轴承故障诊断(附MATLAB程序)讲课讲稿.pdf

上传者: 2301_81159774 | 上传时间: 2025-05-28 13:38:25 | 文件大小: 271KB | 文件类型: PDF
滚动轴承是机械设备中的关键部件,其健康状态直接影响设备的运行效率和可靠性。当轴承出现故障时,必须及时诊断并采取修复措施,以避免更大的损失。本讲稿关注的是利用MATLAB进行滚动轴承故障诊断的方法。 确定轴承的故障特征频率至关重要。在案例中,轴承型号为6205-2RS JEM SKF,转速为1797rpm,滚珠个数为9,滚动体直径为7.938mm,轴承节径为39mm,接触角为0。根据这些参数,可以计算出外圈、内圈、滚动体以及保持架外圈的故障特征频率,分别为107.34Hz、162.21Hz、70.53Hz和11.92Hz。 接着,对轴承故障数据进行时域波形分析。通过导入MATLAB中的Test2.mat数据,进行快速傅里叶变换(FFT)得到时域图,并计算出时域信号的特征值,如有效值、峰值、峰值因子、峭度、脉冲因子和裕度因子。这些特征值有助于理解信号的基本性质和异常程度。 然后,进行了包络谱分析。通过对信号应用经验模态分解(EMD),得到9个内在模态函数(IMF)和一个残余量。通过与原信号的相关性分析,选择相关系数最大的IMF1进行希尔伯特变换,得到的包络谱揭示了故障信息。在包络谱图中,前三个峰值频率58.59Hz、105.5Hz、164.1Hz与理论计算的特征频率相对比,表明故障可能发生在内圈。 MATLAB程序1展示了如何进行原始信号的时域分析和小波去噪处理。通过ddencmp和wdencmp函数,可以有效地去除噪声,使信号更清晰。程序2则演示了EMD分解和Hilbert包络谱的计算过程,通过emd函数分解信号,计算峭度,并使用emd_visu函数可视化结果。 滚动轴承故障诊断通常包括参数计算、时域分析、频域分析以及高级信号处理技术的应用,如EMD和希尔伯特变换。MATLAB作为强大的数据分析工具,对于这类问题提供了强大的支持,能够帮助工程师准确识别轴承的故障模式,从而及时采取维护措施。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明