非机动车未带安全帽检测数据集VOC+YOLO格式1000张4类别.docx

上传者: 2403_88102872 | 上传时间: 2025-06-17 19:56:27 | 文件大小: 940KB | 文件类型: DOCX
非机动车未带安全帽检测数据集是一套完整的图像数据集,主要用于机器学习和深度学习模型的训练和验证,特别是用于计算机视觉领域中的目标检测和识别任务。该数据集采用Pascal VOC格式和YOLO格式,为研究者和开发者提供了便利,便于他们利用这些格式训练模型和进行算法的开发。 VOC格式是一种广泛使用的数据集格式,它由图片文件、XML格式的标注文件和图片信息构成。每张图片都对应一个XML文件,XML文件中详细描述了图片中的对象信息,包括对象的位置和类别等。YOLO格式则是另一种适合实时目标检测系统使用的数据标注格式,它通常包含文本文件,每个文本文件中记录了对应图片中检测到的所有对象的坐标和类别。 本数据集包含了1000张jpg格式的图片,每张图片都包含一个XML文件和一个YOLO格式的文本文件。数据集的图片分辨率统一为1280x720,这有助于保证了数据的一致性和可用性。图片内容涉及了四个类别,分别是:未戴安全帽的行人、戴安全帽的行人、摩托车以及未戴安全帽的非机动车。这些类别分别对应了不同的安全检测需求,例如,保障非机动车骑行者的安全和规范。 在数据集中,每个类别都有一定数量的标注框,用于界定图像中相应类别的目标。例如,“未戴安全帽”的类别框数为1039,而“摩托车”的类别框数为1792。总框数达到4652,这表明数据集对不同场景和目标的覆盖较为全面。 数据集的标注工作使用了名为labelImg的工具完成。labelImg是一个流行的开源标注工具,能够快速地在图片上绘制矩形框,并附上类别标签。这样的标注方式不仅保证了标注的准确性,而且操作简单,适合快速进行数据标注。 需要特别注意的是,数据集的提供者明确表示,使用该数据集所训练出的模型或权重文件的精度无法得到保证。因此,使用该数据集的用户需要自行进行精度的验证和模型调优。 数据集的下载地址也已经提供,这方便用户直接获取资源。数据集的获取和使用过程中,需要注意遵循数据集的使用协议和版权声明,确保合法合规地使用数据。 本数据集是专门针对非机动车安全帽佩戴情况的检测而设计,提供了丰富的标注信息和较高的标注精度。这对于相关领域研究者和开发者的模型训练和研究工作具有非常重要的价值。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明