白蚁检测数据集VOC+YOLO格式949张2类别.docx

上传者: 2403_88102872 | 上传时间: 2025-09-16 17:35:54 | 文件大小: 1.99MB | 文件类型: DOCX
白蚁检测数据集是一种专门用于训练和测试计算机视觉算法的数据集合,特别是用于检测和识别白蚁图像的应用。本数据集采用的是Pascal VOC格式与YOLO格式,这两种格式均广泛应用于计算机视觉领域。 Pascal VOC格式是一种常用的图像标注格式,它包含了图像的标注信息,通常以XML文件的形式存在。每张图片都会对应一个XML文件,该文件中详细记录了图像中所有标注对象的位置和类别信息。在Pascal VOC格式中,对象的位置通常用一个矩形框来标注,并记录框的位置信息,即矩形框左上角的x、y坐标以及宽度和高度,同时会给出对应的类别名称。 YOLO(You Only Look Once)格式是一种较为现代的实时对象检测系统,它将对象检测任务作为单个回归问题,直接从图像像素到边界框坐标和类别概率的映射。YOLO格式的标注数据通常为文本文件,每行包含一个对象的信息,包括类别索引和对象中心点的坐标、宽度和高度信息。 此数据集包含了949张白蚁图片,每张图片都按照上述格式进行了标注,其中标注的类别有两个,分别是“termite”(白蚁)和“wings”(翅膀)。数据集中的所有图片均被标注,共有949个XML文件和949个TXT文件,对应标注了2202个标注框。其中,“termite”类别共标注了1879个框,“wings”类别则标注了323个框。标注工具为labelImg,这是一个流行的图像标注工具,被广泛用于目标检测任务的图像标注工作。 需要注意的是,在YOLO格式中,类别顺序并不与VOC格式中的类别名称相对应,而是根据labels文件夹中classes.txt文件的顺序来确定。这意味着在使用YOLO格式数据进行训练时,需要参照classes.txt文件来正确识别类别索引。 此外,数据集制作者声明,该数据集提供的图片和标注均为准确和合理,但不对由此训练出的模型或权重文件的精度提供任何保证。数据集的使用者需要自行评估模型的性能,并对模型在实际应用中可能遇到的精度和泛化能力负责。此外,数据集可能还包含了图片预览和标注样例,以供使用者参考和验证标注的准确性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明