(源码)基于ROS和YOLO的相机与激光雷达融合检测系统.zip

上传者: 2501_90323865 | 上传时间: 2025-04-11 16:28:07 | 文件大小: 4.82MB | 文件类型: ZIP
# 基于ROS和YOLO的相机与激光雷达融合检测系统 ## 项目简介 本项目是一个基于ROS(Robot Operating System)和YOLO(You Only Look Once)深度学习算法的相机与激光雷达融合检测系统。该系统通过联合标定相机和激光雷达,实现对环境中的物体进行精确检测和定位。主要应用于自动驾驶、机器人导航等领域。 ## 项目的主要特性和功能 1. 相机与激光雷达联合标定 相机内参标定使用棋盘格标定板进行相机内参标定,获取相机的内参矩阵和畸变参数。 相机与激光雷达外参标定通过Autoware工具进行外参标定,获取相机与激光雷达之间的外参矩阵。 2. 物体检测与点云融合 使用YOLO v3算法检测相机图像中的车辆目标。 通过外参矩阵将检测到的目标边界框投影到激光雷达坐标系下,实现点云与图像的融合。 在RVIZ中显示融合后的检测结果,绿色框标记出车辆点云。 3. ROS集成

文件下载

资源详情

[{"title":"( 192 个子文件 4.82MB ) (源码)基于ROS和YOLO的相机与激光雷达融合检测系统.zip","children":[{"title":"CheckForObjects.action <span style='color:#111;'> 200B </span>","children":null,"spread":false},{"title":"data.c <span style='color:#111;'> 46.35KB </span>","children":null,"spread":false},{"title":"parser.c <span style='color:#111;'> 44.69KB </span>","children":null,"spread":false},{"title":"go.c <span style='color:#111;'> 44.05KB </span>","children":null,"spread":false},{"title":"lsd.c <span style='color:#111;'> 43.40KB </span>","children":null,"spread":false},{"title":"image.c <span style='color:#111;'> 43.00KB </span>","children":null,"spread":false},{"title":"classifier.c <span style='color:#111;'> 35.47KB </span>","children":null,"spread":false},{"title":"network.c <span style='color:#111;'> 34.99KB </span>","children":null,"spread":false},{"title":"detector.c <span style='color:#111;'> 28.21KB </span>","children":null,"spread":false},{"title":"lstm_layer.c <span style='color:#111;'> 26.13KB </span>","children":null,"spread":false},{"title":"compare.c <span style='color:#111;'> 21.34KB </span>","children":null,"spread":false},{"title":"region_layer.c <span style='color:#111;'> 20.70KB </span>","children":null,"spread":false},{"title":"darknet.c <span style='color:#111;'> 20.40KB </span>","children":null,"spread":false},{"title":"convolutional_layer.c <span style='color:#111;'> 20.15KB </span>","children":null,"spread":false},{"title":"utils.c <span style='color:#111;'> 17.82KB </span>","children":null,"spread":false},{"title":"rnn.c <span style='color:#111;'> 17.42KB </span>","children":null,"spread":false},{"title":"matrix.c <span style='color:#111;'> 17.20KB </span>","children":null,"spread":false},{"title":"attention.c <span style='color:#111;'> 17.12KB </span>","children":null,"spread":false},{"title":"nightmare.c <span style='color:#111;'> 16.51KB </span>","children":null,"spread":false},{"title":"gru_layer.c <span style='color:#111;'> 15.60KB </span>","children":null,"spread":false},{"title":"yolo_layer.c <span style='color:#111;'> 14.79KB </span>","children":null,"spread":false},{"title":"coco.c <span style='color:#111;'> 14.07KB </span>","children":null,"spread":false},{"title":"connected_layer.c <span style='color:#111;'> 13.52KB </span>","children":null,"spread":false},{"title":"demo.c <span style='color:#111;'> 13.35KB </span>","children":null,"spread":false},{"title":"blas.c <span style='color:#111;'> 13.09KB </span>","children":null,"spread":false},{"title":"yolo.c <span style='color:#111;'> 12.51KB </span>","children":null,"spread":false},{"title":"batchnorm_layer.c <span style='color:#111;'> 12.49KB </span>","children":null,"spread":false},{"title":"crnn_layer.c <span style='color:#111;'> 12.16KB </span>","children":null,"spread":false},{"title":"captcha.c <span style='color:#111;'> 12.09KB </span>","children":null,"spread":false},{"title":"rnn_layer.c <span style='color:#111;'> 12.03KB </span>","children":null,"spread":false},{"title":"detection_layer.c <span style='color:#111;'> 11.75KB </span>","children":null,"spread":false},{"title":"writing.c <span style='color:#111;'> 11.71KB </span>","children":null,"spread":false},{"title":"deconvolutional_layer.c <span style='color:#111;'> 11.69KB </span>","children":null,"spread":false},{"title":"local_layer.c <span style='color:#111;'> 11.19KB </span>","children":null,"spread":false},{"title":"box.c <span style='color:#111;'> 10.99KB </span>","children":null,"spread":false},{"title":"cifar.c <span style='color:#111;'> 10.34KB </span>","children":null,"spread":false},{"title":"segmenter.c <span style='color:#111;'> 9.82KB </span>","children":null,"spread":false},{"title":"gemm.c <span style='color:#111;'> 9.42KB </span>","children":null,"spread":false},{"title":"regressor.c <span style='color:#111;'> 8.99KB </span>","children":null,"spread":false},{"title":"rnn_vid.c <span style='color:#111;'> 8.30KB </span>","children":null,"spread":false},{"title":"cost_layer.c <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"col2im.c <span style='color:#111;'> 7.30KB </span>","children":null,"spread":false},{"title":"reorg_layer.c <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"normalization_layer.c <span style='color:#111;'> 7.02KB </span>","children":null,"spread":false},{"title":"voxel.c <span style='color:#111;'> 6.56KB </span>","children":null,"spread":false},{"title":"tree.c <span style='color:#111;'> 6.48KB </span>","children":null,"spread":false},{"title":"tag.c <span style='color:#111;'> 6.38KB </span>","children":null,"spread":false},{"title":"super.c <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"option_list.c <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"cuda.c <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"maxpool_layer.c <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"activations.c <span style='color:#111;'> 5.62KB </span>","children":null,"spread":false},{"title":"route_layer.c <span style='color:#111;'> 5.59KB </span>","children":null,"spread":false},{"title":"layer.c <span style='color:#111;'> 5.30KB </span>","children":null,"spread":false},{"title":"dice.c <span style='color:#111;'> 5.21KB </span>","children":null,"spread":false},{"title":"upsample_layer.c <span style='color:#111;'> 5.19KB </span>","children":null,"spread":false},{"title":"softmax_layer.c <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"shortcut_layer.c <span style='color:#111;'> 4.89KB </span>","children":null,"spread":false},{"title":"crop_layer.c <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"logistic_layer.c <span style='color:#111;'> 3.94KB </span>","children":null,"spread":false},{"title":"swag.c <span style='color:#111;'> 3.94KB </span>","children":null,"spread":false},{"title":"avgpool_layer.c <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"l2norm_layer.c <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"activation_layer.c <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"dropout_layer.c <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"art.c <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"im2col.c <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"list.c <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false},{"title":"image_interface.c <span style='color:#111;'> 1.79KB </span>","children":null,"spread":false},{"title":"yolov3.cfg <span style='color:#111;'> 8.92KB </span>","children":null,"spread":false},{"title":"yolov3-voc.cfg <span style='color:#111;'> 8.91KB </span>","children":null,"spread":false},{"title":"yolov2.cfg <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"yolov2-voc.cfg <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"yolov2-tiny.cfg <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"yolov2-tiny-voc.cfg <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"YoloObjectDetector.cpp <span style='color:#111;'> 20.69KB </span>","children":null,"spread":false},{"title":"ObjectDetection.cpp <span style='color:#111;'> 9.06KB </span>","children":null,"spread":false},{"title":"combine.cpp <span style='color:#111;'> 7.74KB </span>","children":null,"spread":false},{"title":"yolo_object_detector_node.cpp <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"test_main.cpp <span style='color:#111;'> 790B </span>","children":null,"spread":false},{"title":"blas_kernels.cu <span style='color:#111;'> 33.67KB </span>","children":null,"spread":false},{"title":"convolutional_kernels.cu <span style='color:#111;'> 10.37KB </span>","children":null,"spread":false},{"title":"crop_layer_kernels.cu <span style='color:#111;'> 6.73KB </span>","children":null,"spread":false},{"title":"activation_kernels.cu <span style='color:#111;'> 6.33KB </span>","children":null,"spread":false},{"title":"deconvolutional_kernels.cu <span style='color:#111;'> 4.72KB </span>","children":null,"spread":false},{"title":"maxpool_layer_kernels.cu <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"col2im_kernels.cu <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"im2col_kernels.cu <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"avgpool_layer_kernels.cu <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"dropout_layer_kernels.cu <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"LICENSE.fuck <span style='color:#111;'> 487B </span>","children":null,"spread":false},{"title":"LICENSE.gen <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 227B </span>","children":null,"spread":false},{"title":"LICENSE.gpl <span style='color:#111;'> 34.98KB </span>","children":null,"spread":false},{"title":"stb_image.h <span style='color:#111;'> 261.48KB </span>","children":null,"spread":false},{"title":"stb_image_write.h <span style='color:#111;'> 64.50KB </span>","children":null,"spread":false},{"title":"darknet.h <span style='color:#111;'> 19.79KB </span>","children":null,"spread":false},{"title":"blas.h <span style='color:#111;'> 6.68KB </span>","children":null,"spread":false},{"title":"activations.h <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"image.h <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明