基于CASME2数据集训练的微表情识别系统-支持摄像头实时检测和图片视频分析-包含面部微表情特征提取与分类算法-采用深度学习框架TensorFlow和Keras实现-集成VGG16.zip

上传者: 2501_92227435 | 上传时间: 2025-09-21 13:59:54 | 文件大小: 60.79MB | 文件类型: ZIP
搜索引擎基于CASME2数据集训练的微表情识别系统_支持摄像头实时检测和图片视频分析_包含面部微表情特征提取与分类算法_采用深度学习框架TensorFlow和Keras实现_集成VGG16.zip

文件下载

资源详情

[{"title":"( 46 个子文件 60.79MB ) 基于CASME2数据集训练的微表情识别系统-支持摄像头实时检测和图片视频分析-包含面部微表情特征提取与分类算法-采用深度学习框架TensorFlow和Keras实现-集成VGG16.zip","children":[{"title":"说明文件.txt <span style='color:#111;'> 856B </span>","children":null,"spread":false},{"title":"附赠资源.docx <span style='color:#111;'> 41.95KB </span>","children":null,"spread":false},{"title":"MicroExpressionRecognition-master","children":[{"title":"recognition_camera.py <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"sdg2y-jxz4o.gif <span style='color:#111;'> 5.11MB </span>","children":null,"spread":false},{"title":"data_split.py <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"eval_top5.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"txt_annotation.py <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.33KB </span>","children":null,"spread":false},{"title":"recognition_img.py <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 772B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"backend","children":[{"title":"__init__.py <span style='color:#111;'> 53B </span>","children":null,"spread":false},{"title":"tensorflow_backend.py <span style='color:#111;'> 2.89KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"tensorflow_backend.cpython-36.pyc <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 193B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"dataloader.py <span style='color:#111;'> 4.55KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"dataloader.cpython-36.pyc <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"callbacks.cpython-36.pyc <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 150B </span>","children":null,"spread":false},{"title":"utils.cpython-36.pyc <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"nets","children":[{"title":"__init__.py <span style='color:#111;'> 336B </span>","children":null,"spread":false},{"title":"Loss.py <span style='color:#111;'> 4.99KB </span>","children":null,"spread":false},{"title":"vgg16.py <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"resnet50.py <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"vgg16.cpython-36.pyc <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"mobilenet.cpython-36.pyc <span style='color:#111;'> 2.61KB </span>","children":null,"spread":false},{"title":"resnet50.cpython-36.pyc <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"Loss.cpython-36.pyc <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false},{"title":"__init__.cpython-36.pyc <span style='color:#111;'> 412B </span>","children":null,"spread":false}],"spread":false},{"title":"mobilenet.py <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false}],"spread":true},{"title":"model_data","children":[{"title":"haarcascade_frontalface_alt.xml <span style='color:#111;'> 898.31KB </span>","children":null,"spread":false},{"title":"mobilenet_2_5_224_tf_no_top.h5 <span style='color:#111;'> 2.01MB </span>","children":null,"spread":false},{"title":"cls_classes.txt <span style='color:#111;'> 57B </span>","children":null,"spread":false},{"title":"vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5 <span style='color:#111;'> 56.16MB </span>","children":null,"spread":false}],"spread":true},{"title":"output","children":[{"title":"1.png <span style='color:#111;'> 795.75KB </span>","children":null,"spread":false},{"title":"save.avi <span style='color:#111;'> 411.40KB </span>","children":null,"spread":false}],"spread":false},{"title":"input_test","children":[{"title":"EP02_05.avi <span style='color:#111;'> 499.31KB </span>","children":null,"spread":false}],"spread":false},{"title":"summary.py <span style='color:#111;'> 432B </span>","children":null,"spread":false},{"title":"recognition_video.py <span style='color:#111;'> 4.12KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 145B </span>","children":null,"spread":false},{"title":"classification.py <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"eval_top1.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 10.59KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.32KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明