上传者: AI_data_cloud
|
上传时间: 2025-11-17 23:21:02
|
文件大小: 22KB
|
文件类型: DOCX
内容概要:本文系统讲解了LangChain的核心原理与Prompt Engineering实战应用,重点介绍如何从零构建可落地的对话式知识库。通过六大核心抽象(Schema、Model、PromptTemplate、Chain、Memory、Agent)实现模块化编排,结合RAG技术提升问答准确率,并以PDF文档问答为例展示了完整的技术闭环:文档加载、文本分块、向量化存储、检索增强生成与语义缓存优化。代码实例详尽,涵盖性能调优与压测验证,体现了高可用性和工程落地价值。;
适合人群:具备Python基础和NLP背景,从事AI应用开发、智能客服或知识管理系统研发的工程师,尤其是工作1-3年希望深入大模型应用层的技术人员;
使用场景及目标:①构建企业内部文档智能问答系统;②优化检索命中率与响应延迟;③降低大模型调用成本并控制幻觉输出;④实现可追溯、可缓存、支持多轮对话的企业级RAG应用;
阅读建议:建议结合代码环境动手实践,重点关注分块策略、语义缓存、自定义Prompt设计与性能压测环节,理解LangChain如何通过链式组合提升系统鲁棒性,并关注其在长上下文、Agent化与私有化部署方面的未来趋势。