[{"title":"( 127 个子文件 14.96MB ) 基于B站 @林粒粒呀 老师Python数据分析课程的笔记,包括Python基础知识,以及数据读取、评估、清洗、分析、可视","children":[{"title":"credits.csv <span style='color:#111;'> 3.64MB </span>","children":null,"spread":false},{"title":"titles.csv <span style='color:#111;'> 1.93MB </span>","children":null,"spread":false},{"title":"penguins_cleaned.csv <span style='color:#111;'> 14.96KB </span>","children":null,"spread":false},{"title":"penguins.csv <span style='color:#111;'> 13.20KB </span>","children":null,"spread":false},{"title":"penguins.csv <span style='color:#111;'> 13.20KB </span>","children":null,"spread":false},{"title":"Iris_cleaned.csv <span style='color:#111;'> 3.38KB </span>","children":null,"spread":false},{"title":"Iris.csv <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"height2.csv <span style='color:#111;'> 410B </span>","children":null,"spread":false},{"title":"temperature.csv <span style='color:#111;'> 310B </span>","children":null,"spread":false},{"title":"height.csv <span style='color:#111;'> 134B </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(空白版).ipynb <span style='color:#111;'> 2.21MB </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(空白版)-checkpoint.ipynb <span style='color:#111;'> 2.21MB </span>","children":null,"spread":false},{"title":"6.79_data_visualization_multi-variables.ipynb <span style='color:#111;'> 1.22MB </span>","children":null,"spread":false},{"title":"6.79_data_visualization_multi-variables-checkpoint.ipynb <span style='color:#111;'> 1.22MB </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(参考版).ipynb <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(参考版)-checkpoint.ipynb <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(供参考)-checkpoint.ipynb <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"04 可视化数据 _ 玩转多个变量数据-checkpoint.ipynb <span style='color:#111;'> 815.27KB </span>","children":null,"spread":false},{"title":"6.79_source_code-checkpoint.ipynb <span style='color:#111;'> 815.27KB </span>","children":null,"spread":false},{"title":"3.23_read_csv.ipynb <span style='color:#111;'> 367.30KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(空白版).ipynb <span style='color:#111;'> 360.71KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(空白版)-checkpoint.ipynb <span style='color:#111;'> 360.69KB </span>","children":null,"spread":false},{"title":"6.78_data_visualization_two_variables.ipynb <span style='color:#111;'> 279.04KB </span>","children":null,"spread":false},{"title":"6.78_data_visualization_two_variables-checkpoint.ipynb <span style='color:#111;'> 279.04KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(供参考).ipynb <span style='color:#111;'> 227.61KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(供参考)-checkpoint.ipynb <span style='color:#111;'> 227.31KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(供参考)-checkpoint.ipynb <span style='color:#111;'> 227.30KB </span>","children":null,"spread":false},{"title":"6.78_source_code-checkpoint.ipynb <span style='color:#111;'> 178.80KB </span>","children":null,"spread":false},{"title":"03 可视化数据 _ 玩转两个变量数据-checkpoint.ipynb <span style='color:#111;'> 178.78KB </span>","children":null,"spread":false},{"title":"6.77_data_visualization_single_variable-checkpoint.ipynb <span style='color:#111;'> 167.65KB </span>","children":null,"spread":false},{"title":"6.77_data_visualization_single_variable.ipynb <span style='color:#111;'> 157.07KB </span>","children":null,"spread":false},{"title":"04 项目实战 _ 整理Netflix电影演员评分数据(供参考).ipynb <span style='color:#111;'> 149.50KB </span>","children":null,"spread":false},{"title":"06 项目实战 _ 评估和清理电商销售数据(空白版).ipynb <span style='color:#111;'> 130.02KB </span>","children":null,"spread":false},{"title":"7.82_mining_info_with_hypothesis_testing-checkpoint.ipynb <span style='color:#111;'> 107.02KB </span>","children":null,"spread":false},{"title":"7.82_mining_info_with_hypothesis_testing.ipynb <span style='color:#111;'> 107.02KB </span>","children":null,"spread":false},{"title":"6.77_source_code-checkpoint.ipynb <span style='color:#111;'> 99.41KB </span>","children":null,"spread":false},{"title":"6.75_source_code-checkpoint.ipynb <span style='color:#111;'> 99.40KB </span>","children":null,"spread":false},{"title":"5.34_merge_data.ipynb <span style='color:#111;'> 95.20KB </span>","children":null,"spread":false},{"title":"2.15_pandas_dataframe_with_data.ipynb <span style='color:#111;'> 82.66KB </span>","children":null,"spread":false},{"title":"6.78_blank_version_for_review-checkpoint.ipynb <span style='color:#111;'> 77.76KB </span>","children":null,"spread":false},{"title":"4.29_clean_dirty_data.ipynb <span style='color:#111;'> 71.07KB </span>","children":null,"spread":false},{"title":"2.13_pandas_dataframe.ipynb <span style='color:#111;'> 60.43KB </span>","children":null,"spread":false},{"title":"7.82_source_code-checkpoint.ipynb <span style='color:#111;'> 58.01KB </span>","children":null,"spread":false},{"title":"01 分析数据 _ 用假设检验挖掘信息宝藏-checkpoint.ipynb <span style='color:#111;'> 58.00KB </span>","children":null,"spread":false},{"title":"4.28_clean_messy_data.ipynb <span style='color:#111;'> 43.83KB </span>","children":null,"spread":false},{"title":"4.25_evaluate_data_get_started.ipynb <span style='color:#111;'> 40.28KB </span>","children":null,"spread":false},{"title":"5.36_shape_data_extended.ipynb <span style='color:#111;'> 37.91KB </span>","children":null,"spread":false},{"title":"4.27_clean_data_index&columns.ipynb <span style='color:#111;'> 35.61KB </span>","children":null,"spread":false},{"title":"5.35_shape_data.ipynb <span style='color:#111;'> 34.35KB </span>","children":null,"spread":false},{"title":"ndarray-checkpoint.ipynb <span style='color:#111;'> 34.13KB </span>","children":null,"spread":false},{"title":"6.74_explore_data_descriptive_statistics_dig_info.ipynb <span style='color:#111;'> 25.74KB </span>","children":null,"spread":false},{"title":"6.74_explore_data_descriptive_statistics_dig_info-checkpoint.ipynb <span style='color:#111;'> 25.74KB </span>","children":null,"spread":false},{"title":"6.77_blank_version_for_review-checkpoint.ipynb <span style='color:#111;'> 21.15KB </span>","children":null,"spread":false},{"title":"2.9_pandas_series.ipynb <span style='color:#111;'> 19.57KB </span>","children":null,"spread":false},{"title":"4.30_save_cleaned_data.ipynb <span style='color:#111;'> 19.00KB </span>","children":null,"spread":false},{"title":"2.17_pandas_dataframe_with_data_extended.ipynb <span style='color:#111;'> 17.22KB </span>","children":null,"spread":false},{"title":"3.21_read_json.ipynb <span style='color:#111;'> 16.82KB </span>","children":null,"spread":false},{"title":"6.74_source_code-checkpoint.ipynb <span style='color:#111;'> 16.69KB </span>","children":null,"spread":false},{"title":"6.74_blank_version_for_review-checkpoint.ipynb <span style='color:#111;'> 16.42KB </span>","children":null,"spread":false},{"title":"2.11_pandas_series_extended.ipynb <span style='color:#111;'> 14.79KB </span>","children":null,"spread":false},{"title":"2.7_numpy_array_extended.ipynb <span style='color:#111;'> 12.20KB </span>","children":null,"spread":false},{"title":"4.26_clean_data.ipynb <span style='color:#111;'> 7.85KB </span>","children":null,"spread":false},{"title":"7.81_hypothetical_test.ipynb <span style='color:#111;'> 7.17KB </span>","children":null,"spread":false},{"title":"6.76_data_visualization_chart_extended.ipynb <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false},{"title":"6.76_data_visualization_chart_extended-checkpoint.ipynb <span style='color:#111;'> 6.70KB </span>","children":null,"spread":false},{"title":"TERMINOLOGY-checkpoint.ipynb <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"7.81_hypothetical_test-checkpoint.ipynb <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"4.32_evaluate_and_clean_data_manual.ipynb <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"3.20_dataformat_json.ipynb <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"3.19_retrieve_data.ipynb <span style='color:#111;'> 4.56KB </span>","children":null,"spread":false},{"title":"6.75_data_visualization_chart.ipynb <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"6.75_data_visualization_chart-checkpoint.ipynb <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"3.22_dataformat_csv.ipynb <span style='color:#111;'> 4.24KB </span>","children":null,"spread":false},{"title":"4.24_evaluate_data_criteria.ipynb <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"6.72_Statistics_basics.ipynb <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"6.72_Statistics_basics-checkpoint.ipynb <span style='color:#111;'> 4.16KB </span>","children":null,"spread":false},{"title":"2.4_Markdown和LaTex入门.ipynb <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"6.73_statistics_basics_describe_numerical_data.ipynb <span style='color:#111;'> 3.50KB </span>","children":null,"spread":false},{"title":"04 项目实战 _ 整理Netflix电影演员评分数据(空白版).ipynb <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"4.33_upload_files_to_github.ipynb <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"index-checkpoint.ipynb <span style='color:#111;'> 2.36KB </span>","children":null,"spread":false},{"title":"05 项目实战 _ 可视化帕默群岛企鹅数据(空白版)-checkpoint.ipynb <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"02 项目实战 _ 分析鸢尾花种类数据(空白版)-checkpoint.ipynb <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"4.31_more_dataset_for_data_analysis.ipynb <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"6.73_statistics_basics_describe_numerical_data-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.33KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 886B </span>","children":null,"spread":false},{"title":"可视化帕默群岛企鹅数据-zyf.pdf <span style='color:#111;'> 1.91MB </span>","children":null,"spread":false},{"title":"假设检验项目实战-zyf.pdf <span style='color:#111;'> 811.16KB </span>","children":null,"spread":false},{"title":"26_object_oriented_programming.py <span style='color:#111;'> 7.05KB </span>","children":null,"spread":false},{"title":"34&35_test.py <span style='color:#111;'> 6.83KB </span>","children":null,"spread":false},{"title":"19_dictionary.py <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"2.3_use_jupyter_notebook.py <span style='color:#111;'> 5.72KB </span>","children":null,"spread":false},{"title":"2.4_Markdown&LaTex.py <span style='color:#111;'> 4.62KB </span>","children":null,"spread":false},{"title":"31_file_read.py <span style='color:#111;'> 4.58KB </span>","children":null,"spread":false},{"title":"2.5_numpy_array.py <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"29_class_inheritance.py <span style='color:#111;'> 3.10KB </span>","children":null,"spread":false},{"title":"36_Higher_order_functions&anonymous_functions.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"33_error_fixing.py <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"25_module.py <span style='color:#111;'> 2.49KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]