实时驾驶行为识别与驾驶安全检测-实现了开车打电话-开车打哈欠的实时识别

上传者: QQ_1309399183 | 上传时间: 2025-04-27 08:38:09 | 文件大小: 84.83MB | 文件类型: RAR
实时驾驶行为识别与驾驶安全检测-实现了开车打电话-开车打哈欠的实时识别 实现开车打电话和开车打哈欠的实时识别,对于提升驾驶安全具有重要意义。下面将简要介绍如何构建这样一个系统,并概述代码运行的主要步骤。请注意,这里不会包含具体代码,而是提供一个高层次的指南,以帮助理解整个过程。 #### 1. 环境搭建 - **选择操作系统**:推荐使用Linux或Windows,确保有足够的计算资源(CPU/GPU)来支持深度学习模型的运行。 - **安装依赖库**:包括Python环境、PyTorch或TensorFlow等深度学习框架、OpenCV用于图像处理、dlib或其他面部特征检测库等。 - **获取YOLO模型**:下载预训练的YOLO模型,或者根据自己的数据集进行微调,特别是针对特定行为如打电话、打哈欠的行为特征。 #### 2. 数据准备 - **收集数据**:收集或创建一个包含驾驶员正常驾驶、打电话和打哈欠等行为的数据集。每个类别应该有足够的样本量以确保模型的学习效果。 - **标注数据**:对数据进行标注,明确指出哪些帧属于哪种行为。可以使用像LabelImg这样的工具

文件下载

资源详情

[{"title":"( 41 个子文件 84.83MB ) 实时驾驶行为识别与驾驶安全检测-实现了开车打电话-开车打哈欠的实时识别","children":[{"title":"driver_action-pres","children":[{"title":"mobilenetv2_incar_4cla_new.py <span style='color:#111;'> 15.52KB </span>","children":null,"spread":false},{"title":"demo_test","children":[{"title":"helper","children":[{"title":"draw_label.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"draw_label.cpython-37.pyc <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"draw_label.cpython-36.pyc <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"save_videos","children":[{"title":"smoke.mp4_2024_03_21_21_17_main.mp4 <span style='color:#111;'> 1.71MB </span>","children":null,"spread":false},{"title":"3-FemaleGlasses.mp4_2024_03_21_17_55_main.mp4 <span style='color:#111;'> 13.96MB </span>","children":null,"spread":false},{"title":"call.mp4_2024_03_21_18_02_main.mp4 <span style='color:#111;'> 11.93MB </span>","children":null,"spread":false}],"spread":true},{"title":"test_video","children":[{"title":"test","children":[{"title":"38-FemaleNoGlasses-Yawning_2020225154732.mp4 <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false},{"title":"smoke.mp4 <span style='color:#111;'> 1.11MB </span>","children":null,"spread":false},{"title":"12671.jpg <span style='color:#111;'> 81.13KB </span>","children":null,"spread":false},{"title":"12646.jpg <span style='color:#111;'> 79.00KB </span>","children":null,"spread":false},{"title":"call.mp4 <span style='color:#111;'> 3.10MB </span>","children":null,"spread":false},{"title":"11-MaleGlasses-Yawning.mp4 <span style='color:#111;'> 1.75MB </span>","children":null,"spread":false},{"title":"12615.jpg <span style='color:#111;'> 80.96KB </span>","children":null,"spread":false},{"title":"12635.jpg <span style='color:#111;'> 76.53KB </span>","children":null,"spread":false},{"title":"3-FemaleGlasses.mp4 <span style='color:#111;'> 7.38MB </span>","children":null,"spread":false},{"title":"25-MaleSunGlasses-Yawning_2020225154826.mp4 <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":"35-FemaleNoGlasses-Talking_2020225154757.mp4 <span style='color:#111;'> 2.14MB </span>","children":null,"spread":false},{"title":"12659.jpg <span style='color:#111;'> 79.94KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"weight","children":[{"title":"mobilenetv2_most_accurate_test.pkl <span style='color:#111;'> 8.69MB </span>","children":null,"spread":false},{"title":"mobilenetv2_lowest_loss.pkl <span style='color:#111;'> 8.69MB </span>","children":null,"spread":false}],"spread":true},{"title":"demo_test.py <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"net","children":[{"title":"mobilenetV2.py <span style='color:#111;'> 108B </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"ShuffleNetV2.cpython-36.pyc <span style='color:#111;'> 4.47KB </span>","children":null,"spread":false},{"title":"ShuffleNetV2.cpython-37.pyc <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false}],"spread":true},{"title":"ShuffleNetV2.py <span style='color:#111;'> 5.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"demo_test_ori.py <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false}],"spread":true},{"title":"mobilenetv3-small-c7eb32fe.pth <span style='color:#111;'> 11.98MB </span>","children":null,"spread":false},{"title":"mobilenetv3_small_4cla_SGD.py <span style='color:#111;'> 16.32KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"XWZkeshe-master.iml <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 6.49KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 6.80KB </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 289B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false}],"spread":true},{"title":"mobilenetv3.py <span style='color:#111;'> 7.61KB </span>","children":null,"spread":false},{"title":"mobilenetv2_incar_5cla.py <span style='color:#111;'> 17.60KB </span>","children":null,"spread":false},{"title":"mobilenet_v2-b0353104.pth <span style='color:#111;'> 13.55MB </span>","children":null,"spread":false},{"title":"mobilenetv2_incar_4cla.py <span style='color:#111;'> 15.53KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 386B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明