基于CNN-LSTM算法的锂离子电池SOH估计:融合间接健康因子与NASA数据集验证 深度学习

上传者: XhbDCWxUY | 上传时间: 2026-02-06 00:06:10 | 文件大小: 1.1MB | 文件类型: ZIP
内容概要:本文介绍了一种基于CNN-LSTM算法的锂离子电池健康状态(SOH)估计方法。首先,从放电电压最低点时间、平均放电电压和平均放电温度三个方面提取间接健康因子。接着,构建了一个CNN-LSTM联合模型来评估锂电池的健康状态,并利用NASA卓越预测中心的数据集(B0005、B0006)进行了验证。实验结果显示,该方法具有较高的估计精度,特别是在电池容量衰减到80%以下时,能够准确捕捉关键拐点。此外,文中详细介绍了数据预处理、模型架构设计以及训练过程中的一些优化技巧,如早停机制、回调函数设置等。 适合人群:从事电池管理系统研究、机器学习应用开发的研究人员和技术人员。 使用场景及目标:适用于需要对锂离子电池健康状态进行精准评估的应用场景,如电动汽车、储能系统等领域。目标是提高电池管理系统的可靠性和安全性,延长电池使用寿命。 其他说明:文中提供的代码实现了完整的SOH估计流程,包括数据预处理、模型训练和结果可视化。特别提到,在模型中加入TimeDistributed层可以进一步提升准确率,但会增加计算成本。

文件下载

资源详情

[{"title":"( 3 个子文件 1.1MB ) 基于CNN-LSTM算法的锂离子电池SOH估计:融合间接健康因子与NASA数据集验证 深度学习","children":[{"title":"基于CNN-LSTM算法的锂离子电池SOH估计:融合间接健康因子与NASA数据集验证.pdf <span style='color:#111;'> 109.87KB </span>","children":null,"spread":false},{"title":"基于CNN-LSTM的锂离子电池健康状态SOH估计:提取间接健康因子与模型验证.docx <span style='color:#111;'> 37.80KB </span>","children":null,"spread":false},{"title":"关键资源.md <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明