基于BERT+Tensorflow+Horovod的NLU(意图识别+槽位填充)分布式GPU训练模块.zip

上传者: admin_maxin | 上传时间: 2025-06-26 16:13:39 | 文件大小: 7.26MB | 文件类型: ZIP
标题 "基于BERT+Tensorflow+Horovod的NLU(意图识别+槽位填充)分布式GPU训练模块.zip" 提供了关键信息,说明这个压缩包包含了一个使用BERT模型,通过TensorFlow框架,并利用Horovod进行分布式GPU训练的自然语言理解(NLU)系统。NLU是AI领域中的一个重要组成部分,它涉及到意图识别和槽位填充,这两部分是对话系统中的基础任务。 1. **BERT**: BERT(Bidirectional Encoder Representations from Transformers)是一种预训练语言模型,由Google在2018年推出。它通过Transformer架构在大量未标注文本上进行自我监督学习,学习到丰富的上下文依赖表示。在NLU任务中,BERT可以提供强大的语义理解能力,提升模型的性能。 2. **TensorFlow**: TensorFlow是Google开源的一个深度学习框架,它允许开发人员构建和部署复杂的机器学习模型。在这个项目中,TensorFlow被用来实现BERT模型的训练流程,包括模型定义、数据处理、优化器配置、损失函数计算等。 3. **Horovod**: Horovod是一个用于分布式训练的开源库,它简化了在多GPU或多节点上并行训练的复杂性。通过Horovod,开发者可以将训练任务分解到多个GPU上,以加速模型的收敛速度。在大型深度学习模型如BERT的训练中,Horovod可以显著提高效率。 4. **意图识别**: 意图识别是NLU的一部分,其目标是理解用户输入的意图或目标,例如在智能助手场景中,识别用户是要查询天气、预订餐厅还是播放音乐。在BERT模型中,这通常通过分类任务来实现,模型会为每个可能的意图分配概率。 5. **槽位填充**: 槽位填充是识别并提取用户输入中的特定信息,如时间、地点、人名等。这些信息称为槽位,填充槽位能帮助系统更好地理解用户的需求。在BERT模型中,这通常采用序列标注方法,为每个输入词分配一个标签,表示它是否属于某个特定槽位。 6. **分布式GPU训练**: 分布式GPU训练是利用多块GPU共同处理大规模计算任务的方法。在本项目中,通过Horovod,BERT模型的训练可以在多台机器的多个GPU上并行进行,每个GPU处理一部分计算,然后同步梯度以更新模型参数,这样可以大大缩短训练时间。 7. **代码结构**:"JointBERT_nlu_tf-master"可能代表代码库的主目录,暗示代码实现了BERT模型的联合训练,即将意图识别和槽位填充作为联合任务,这样可能会使模型更好地理解两者之间的关联,从而提升整体NLU性能。 综合以上,这个压缩包中的代码应该是一个完整的端到端解决方案,涵盖了从数据预处理、模型搭建、分布式训练到模型评估的全过程,适用于开发和研究NLU系统,特别是需要高效处理大规模数据的场景。对于想要深入理解和应用BERT、TensorFlow以及分布式训练的开发者来说,这是一个宝贵的资源。

文件下载

资源详情

[{"title":"( 96 个子文件 7.26MB ) 基于BERT+Tensorflow+Horovod的NLU(意图识别+槽位填充)分布式GPU训练模块.zip","children":[{"title":"JointBERT_nlu_tf-master","children":[{"title":"run_intent_slot_jion_task_bert.py <span style='color:#111;'> 47.08KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"input","children":[{"title":"atis_Intent_Detection_and_Slot_Filling","children":[{"title":"train","children":[{"title":"check_train_raw_data.py <span style='color:#111;'> 173B </span>","children":null,"spread":false},{"title":"seq.out <span style='color:#111;'> 405.82KB </span>","children":null,"spread":false},{"title":"seq.in <span style='color:#111;'> 283.05KB </span>","children":null,"spread":false},{"title":"label <span style='color:#111;'> 56.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"valid","children":[{"title":"seq.out <span style='color:#111;'> 46.64KB </span>","children":null,"spread":false},{"title":"seq.in <span style='color:#111;'> 31.99KB </span>","children":null,"spread":false},{"title":"label <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false}],"spread":true},{"title":"test","children":[{"title":"seq.out <span style='color:#111;'> 79.33KB </span>","children":null,"spread":false},{"title":"seq.in <span style='color:#111;'> 50.90KB </span>","children":null,"spread":false},{"title":"label <span style='color:#111;'> 11.36KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"CoNLL2003_NER","children":[{"title":"train","children":[{"title":"seq.out <span style='color:#111;'> 535.10KB </span>","children":null,"spread":false},{"title":"seq.in <span style='color:#111;'> 1.04MB </span>","children":null,"spread":false}],"spread":true},{"title":"dev.txt <span style='color:#111;'> 808.05KB </span>","children":null,"spread":false},{"title":"valid","children":[{"title":"seq.out <span style='color:#111;'> 135.14KB </span>","children":null,"spread":false},{"title":"seq.in <span style='color:#111;'> 269.07KB </span>","children":null,"spread":false}],"spread":true},{"title":"test","children":[{"title":"seq.out <span style='color:#111;'> 123.28KB </span>","children":null,"spread":false},{"title":"seq.in <span style='color:#111;'> 240.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.txt <span style='color:#111;'> 730.56KB </span>","children":null,"spread":false},{"title":"conll03_raw_data_to_stand_file.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"train.txt <span style='color:#111;'> 3.13MB </span>","children":null,"spread":false}],"spread":true},{"title":"snips_Intent_Detection_and_Slot_Filling","children":[{"title":"train","children":[{"title":"seq.out <span style='color:#111;'> 928.64KB </span>","children":null,"spread":false},{"title":"seq.in <span style='color:#111;'> 602.62KB </span>","children":null,"spread":false},{"title":"label <span style='color:#111;'> 180.21KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"seq-checkpoint.in <span style='color:#111;'> 602.62KB </span>","children":null,"spread":false},{"title":"label-checkpoint <span style='color:#111;'> 180.21KB </span>","children":null,"spread":false},{"title":"seq-checkpoint.out <span style='color:#111;'> 928.64KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"valid","children":[{"title":"seq.out <span style='color:#111;'> 49.44KB </span>","children":null,"spread":false},{"title":"seq.in <span style='color:#111;'> 32.84KB </span>","children":null,"spread":false},{"title":"label <span style='color:#111;'> 9.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"test","children":[{"title":"seq.out <span style='color:#111;'> 49.72KB </span>","children":null,"spread":false},{"title":"seq.in <span style='color:#111;'> 32.34KB </span>","children":null,"spread":false},{"title":"label <span style='color:#111;'> 9.88KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true},{"title":"run_intent_bert.py <span style='color:#111;'> 44.27KB </span>","children":null,"spread":false},{"title":"docker","children":[{"title":"shortcuts.jupyterlab-settings <span style='color:#111;'> 184B </span>","children":null,"spread":false},{"title":"set_root_pw.sh <span style='color:#111;'> 719B </span>","children":null,"spread":false},{"title":"build_ngc.sh <span style='color:#111;'> 61B </span>","children":null,"spread":false},{"title":"bashrc <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"run_jupyter.sh <span style='color:#111;'> 111B </span>","children":null,"spread":false},{"title":"run_ssh.sh <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"airflow.yaml <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"simhei.ttf <span style='color:#111;'> 9.30MB </span>","children":null,"spread":false},{"title":"ubuntu_sources.list <span style='color:#111;'> 2.74KB </span>","children":null,"spread":false},{"title":"build_tensorrt.sh <span style='color:#111;'> 62B </span>","children":null,"spread":false},{"title":"tensorrt.Dockerfile <span style='color:#111;'> 4.90KB </span>","children":null,"spread":false},{"title":"ngc.Dockerfile <span style='color:#111;'> 3.80KB </span>","children":null,"spread":false},{"title":"build_airflow.sh <span style='color:#111;'> 58B </span>","children":null,"spread":false},{"title":"jupyter_notebook_config.py <span style='color:#111;'> 592B </span>","children":null,"spread":false},{"title":"triton.Dockerfile <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"create_tf_container.sh <span style='color:#111;'> 289B </span>","children":null,"spread":false},{"title":"create_ngc_container.sh <span style='color:#111;'> 367B </span>","children":null,"spread":false},{"title":"create_pytorch_container.sh <span style='color:#111;'> 265B </span>","children":null,"spread":false},{"title":"model_train.yml <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"supervisord.conf <span style='color:#111;'> 216B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 516B </span>","children":null,"spread":false},{"title":"jupyter_server_config.py <span style='color:#111;'> 581B </span>","children":null,"spread":false},{"title":"airflow.Dockerfile <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"create_trt_container.sh <span style='color:#111;'> 260B </span>","children":null,"spread":false}],"spread":false},{"title":"utils","children":[{"title":"calculate_model_score.py <span style='color:#111;'> 25.56KB </span>","children":null,"spread":false},{"title":"score_summarization.py <span style='color:#111;'> 868B </span>","children":null,"spread":false},{"title":"model","children":[{"title":"bert","children":[{"title":"modeling_test.py <span style='color:#111;'> 8.98KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 616B </span>","children":null,"spread":false},{"title":"extract_features.py <span style='color:#111;'> 13.57KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.09KB </span>","children":null,"spread":false},{"title":"run_pretraining.py <span style='color:#111;'> 18.23KB </span>","children":null,"spread":false},{"title":"sample_text.txt <span style='color:#111;'> 4.29KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"optimization_test.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"modeling.py <span style='color:#111;'> 37.03KB </span>","children":null,"spread":false},{"title":"optimization_hvd.py <span style='color:#111;'> 7.32KB </span>","children":null,"spread":false},{"title":"optimization.py <span style='color:#111;'> 6.11KB </span>","children":null,"spread":false},{"title":"tokenization_test.py <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"tokenization.py <span style='color:#111;'> 11.97KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 110B </span>","children":null,"spread":false},{"title":"predicting_movie_reviews_with_bert_on_tf_hub.ipynb <span style='color:#111;'> 64.93KB </span>","children":null,"spread":false},{"title":"create_pretraining_data.py <span style='color:#111;'> 14.88KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"run_classifier_with_tfhub.py <span style='color:#111;'> 9.33KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 41.77KB </span>","children":null,"spread":false},{"title":"multilingual.md <span style='color:#111;'> 11.03KB </span>","children":null,"spread":false},{"title":"run_classifier.py <span style='color:#111;'> 33.97KB </span>","children":null,"spread":false},{"title":"run_squad.py <span style='color:#111;'> 45.44KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true},{"title":".idea","children":[{"title":"misc.xml <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 284B </span>","children":null,"spread":false},{"title":"deployment.xml <span style='color:#111;'> 441B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"JointBERT_nlu_tf.iml <span style='color:#111;'> 284B </span>","children":null,"spread":false}],"spread":true},{"title":"run_slot_bert.py <span style='color:#111;'> 40.62KB </span>","children":null,"spread":false},{"title":"config","children":[{"title":"config.py <span style='color:#111;'> 524B </span>","children":null,"spread":false}],"spread":true},{"title":"scripts","children":[{"title":"slot_task","children":[{"title":"test.sh <span style='color:#111;'> 229B </span>","children":null,"spread":false},{"title":"run.sh <span style='color:#111;'> 398B </span>","children":null,"spread":false}],"spread":true},{"title":"intent_task","children":[{"title":"test.sh <span style='color:#111;'> 235B </span>","children":null,"spread":false},{"title":"run.sh <span style='color:#111;'> 401B </span>","children":null,"spread":false}],"spread":true},{"title":"join_task","children":[{"title":"test.sh <span style='color:#111;'> 246B </span>","children":null,"spread":false},{"title":"run.sh <span style='color:#111;'> 414B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明