Bringing-Old-Photos-Back-to-Life(打包版)

上传者: axutongxue | 上传时间: 2025-07-08 12:58:22 | 文件大小: 865.03MB | 文件类型: ZIP
标题“Bringing-Old-Photos-Back-to-Life(打包版)”揭示了这是一个关于恢复或增强旧照片质量的项目,可能包含一系列工具、教程或软件。这个项目与微软(Microsoft)有关,根据标签“microsoft”,我们可以推断这可能是微软推出的一项技术或应用。 在描述中,“微软老照片修复”进一步确认了这是一个专注于使用微软技术来恢复和改善老照片清晰度和色彩的解决方案。可能包括使用人工智能(AI)和机器学习(ML)算法,这些技术近年来在图像处理领域取得了显著进步。 微软在图像处理领域的创新,特别是AI和ML的应用,可以帮助用户将模糊、褪色、破损的照片恢复到接近原始的状态。这通常涉及到几个关键步骤: 1. 图像增强:通过增强图像的亮度、对比度和色彩平衡,改善照片的整体外观。这可能涉及自动调整和局部调整功能。 2. 噪点减少:利用AI技术减少照片中的噪点,提高图像的清晰度。 3. 裂纹和破损修复:对于有物理损坏的照片,如裂痕、缺失部分,AI可以学习大量完好照片的模式,填补丢失的信息。 4. 色彩恢复:对于黑白或褪色的照片,AI可以分析类似时期或场景的彩色照片,推测并恢复原来的颜色。 5. 分辨率提升:对于低分辨率的老照片,AI可以增加细节,提高图像的分辨率。 6. 人像恢复:对于面部特征不清晰的人像照片,AI可以通过面部识别和重建技术来恢复面部细节。 在“Bringing-Old-Photos-Back-to-Life”的压缩包文件中,可能包含以下内容: - 执行此过程的软件应用程序或插件。 - 使用指南或教程,指导用户如何上传和处理他们的老照片。 - 示例照片和前后对比,展示技术的效果。 - API文档或开发者资源,如果微软提供了允许开发人员自定义或集成修复功能的接口。 - 用户手册或FAQ,解答常见问题和操作步骤。 微软的老照片修复技术是利用先进的计算能力,结合AI和ML的智能,为用户提供了将珍贵记忆恢复生机的机会。这种技术不仅有助于个人保存家庭历史,也为历史研究者和档案工作者提供了强大的工具。通过学习和理解这个过程,我们可以更深入地了解数字图像处理的前沿进展,并欣赏科技如何改变我们与过去联系的方式。

文件下载

资源详情

[{"title":"( 86 个子文件 865.03MB ) Bringing-Old-Photos-Back-to-Life(打包版)","children":[{"title":"Bringing-Old-Photos-Back-to-Life","children":[{"title":"SECURITY.md <span style='color:#111;'> 2.71KB </span>","children":null,"spread":false},{"title":"test_images","children":[{"title":"old_w_scratch","children":null,"spread":false},{"title":"old","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 7.90KB </span>","children":null,"spread":false},{"title":"Face_Enhancement","children":[{"title":"data","children":[{"title":"__pycache__","children":null,"spread":false}],"spread":true},{"title":"options","children":[{"title":"__pycache__","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"networks","children":[{"title":"sync_batchnorm","children":[{"title":"__pycache__","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":null,"spread":false}],"spread":true},{"title":"checkpoints","children":[{"title":"Setting_9_epoch_100","children":null,"spread":false},{"title":"FaceSR_512","children":null,"spread":false}],"spread":true},{"title":"util","children":[{"title":"__pycache__","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"output","children":[{"title":"stage_3_face_output","children":[{"title":"each_img","children":null,"spread":false}],"spread":true},{"title":"stage_2_detection_output","children":null,"spread":false},{"title":"final_output","children":null,"spread":false},{"title":"stage_1_restore_output","children":[{"title":"input_image","children":null,"spread":false},{"title":"masks","children":[{"title":"input","children":null,"spread":false},{"title":"mask","children":null,"spread":false}],"spread":true},{"title":"restored_image","children":null,"spread":false},{"title":"origin","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"Face_Detection","children":null,"spread":false},{"title":"run.py <span style='color:#111;'> 6.62KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 136B </span>","children":null,"spread":false},{"title":"GUI.py <span style='color:#111;'> 7.07KB </span>","children":null,"spread":false},{"title":"kubernetes-pod.yml <span style='color:#111;'> 727B </span>","children":null,"spread":false},{"title":"imgs","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 12.01KB </span>","children":null,"spread":false},{"title":"Global","children":[{"title":"train_mapping.py <span style='color:#111;'> 5.81KB </span>","children":null,"spread":false},{"title":"train_domain_A.py <span style='color:#111;'> 5.28KB </span>","children":null,"spread":false},{"title":"detection.py <span style='color:#111;'> 4.91KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"online_dataset_for_old_photos.py <span style='color:#111;'> 14.95KB </span>","children":null,"spread":false},{"title":"base_data_loader.py <span style='color:#111;'> 268B </span>","children":null,"spread":false},{"title":"base_dataset.py <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"data_loader.py <span style='color:#111;'> 302B </span>","children":null,"spread":false},{"title":"image_folder.py <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"Create_Bigfile.py <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"Load_Bigfile.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"custom_dataset_data_loader.py <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false}],"spread":false},{"title":"options","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"train_options.py <span style='color:#111;'> 5.08KB </span>","children":null,"spread":false},{"title":"test_options.py <span style='color:#111;'> 4.50KB </span>","children":null,"spread":false},{"title":"base_options.py <span style='color:#111;'> 15.85KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-310.pyc <span style='color:#111;'> 194B </span>","children":null,"spread":false},{"title":"base_options.cpython-310.pyc <span style='color:#111;'> 9.42KB </span>","children":null,"spread":false},{"title":"test_options.cpython-310.pyc <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"train_domain_B.py <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"detection_models","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"sync_batchnorm","children":[{"title":"__init__.py <span style='color:#111;'> 547B </span>","children":null,"spread":false},{"title":"batchnorm_reimpl.py <span style='color:#111;'> 2.33KB </span>","children":null,"spread":false},{"title":"comm.py <span style='color:#111;'> 4.34KB </span>","children":null,"spread":false},{"title":"batchnorm.py <span style='color:#111;'> 16.08KB </span>","children":null,"spread":false},{"title":"unittest.py <span style='color:#111;'> 768B </span>","children":null,"spread":false},{"title":"replicate.py <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-310.pyc <span style='color:#111;'> 544B </span>","children":null,"spread":false},{"title":"comm.cpython-310.pyc <span style='color:#111;'> 4.80KB </span>","children":null,"spread":false},{"title":"replicate.cpython-310.pyc <span style='color:#111;'> 3.44KB </span>","children":null,"spread":false},{"title":"batchnorm.cpython-310.pyc <span style='color:#111;'> 14.92KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"networks.py <span style='color:#111;'> 11.48KB </span>","children":null,"spread":false},{"title":"antialiasing.py <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-310.pyc <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"antialiasing.cpython-310.pyc <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"networks.cpython-310.pyc <span style='color:#111;'> 8.87KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"models","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 29.99KB </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"mapping_model.py <span style='color:#111;'> 13.44KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 4.18KB </span>","children":null,"spread":false},{"title":"pix2pixHD_model_DA.py <span style='color:#111;'> 16.11KB </span>","children":null,"spread":false},{"title":"pix2pixHD_model.py <span style='color:#111;'> 14.77KB </span>","children":null,"spread":false},{"title":"NonLocal_feature_mapping_model.py <span style='color:#111;'> 6.26KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"__init__.cpython-310.pyc <span style='color:#111;'> 193B </span>","children":null,"spread":false},{"title":"base_model.cpython-310.pyc <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"NonLocal_feature_mapping_model.cpython-310.pyc <span style='color:#111;'> 4.10KB </span>","children":null,"spread":false},{"title":"networks.cpython-310.pyc <span style='color:#111;'> 18.70KB </span>","children":null,"spread":false},{"title":"mapping_model.cpython-310.pyc <span style='color:#111;'> 8.67KB </span>","children":null,"spread":false},{"title":"models.cpython-310.pyc <span style='color:#111;'> 946B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"checkpoints","children":[{"title":"detection","children":null,"spread":false},{"title":"label2city","children":null,"spread":false},{"title":"restoration","children":[{"title":"VAE_B_quality","children":[{"title":"latest_net_G.pth <span style='color:#111;'> 3.34MB </span>","children":null,"spread":false},{"title":"latest_optimizer_G.pth <span style='color:#111;'> 6.67MB </span>","children":null,"spread":false},{"title":"latest_optimizer_D.pth <span style='color:#111;'> 42.19MB </span>","children":null,"spread":false},{"title":"latest_net_D.pth <span style='color:#111;'> 21.10MB </span>","children":null,"spread":false}],"spread":false},{"title":"mapping_scratch","children":[{"title":"latest_optimizer_mapping_net.pth <span style='color:#111;'> 391.75MB </span>","children":null,"spread":false},{"title":"latest_optimizer_D.pth <span style='color:#111;'> 42.24MB </span>","children":null,"spread":false},{"title":"latest_net_mapping_net.pth <span style='color:#111;'> 195.88MB </span>","children":null,"spread":false},{"title":"latest_net_D.pth <span style='color:#111;'> 21.25MB </span>","children":null,"spread":false}],"spread":false},{"title":"mapping_quality","children":null,"spread":false},{"title":"VAE_A_quality","children":[{"title":"latest_net_G.pth <span style='color:#111;'> 3.34MB </span>","children":null,"spread":false},{"title":"latest_optimizer_featD.pth <span style='color:#111;'> 21.57MB </span>","children":null,"spread":false},{"title":"latest_optimizer_G.pth <span style='color:#111;'> 6.67MB </span>","children":null,"spread":false},{"title":"latest_net_featD.pth <span style='color:#111;'> 10.79MB </span>","children":null,"spread":false},{"title":"latest_optimizer_D.pth <span style='color:#111;'> 42.19MB </span>","children":null,"spread":false},{"title":"latest_net_D.pth <span style='color:#111;'> 21.10MB </span>","children":null,"spread":false}],"spread":false},{"title":"mapping_Patch_Attention","children":null,"spread":false},{"title":"VAE_B_scratch","children":[{"title":"latest_net_G.pth <span style='color:#111;'> 3.34MB </span>","children":null,"spread":false},{"title":"latest_optimizer_G.pth <span style='color:#111;'> 6.67MB </span>","children":null,"spread":false},{"title":"latest_optimizer_D.pth <span style='color:#111;'> 42.19MB </span>","children":null,"spread":false},{"title":"latest_net_D.pth <span style='color:#111;'> 21.10MB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false},{"title":"test.py <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"util","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"image_pool.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"visualizer.py <span style='color:#111;'> 5.65KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"util.cpython-310.pyc <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"__init__.cpython-310.pyc <span style='color:#111;'> 191B </span>","children":null,"spread":false},{"title":"image_pool.cpython-310.pyc <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"detection_util","children":[{"title":"util.py <span style='color:#111;'> 7.79KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"util.cpython-310.pyc <span style='color:#111;'> 7.61KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明