数据治理实战指南

上传者: bean | 上传时间: 2026-02-02 10:32:22 | 文件大小: 21.43MB | 文件类型: PDF
本书系统阐述了如何构建可重复、可靠且成本效益高的数据治理框架。通过‘操作手册’形式,提供从角色定义、流程设计到质量控制的完整方法论。涵盖数据编目、主数据管理、业务术语表建设等核心工作流,并结合行业案例与评估模型,帮助组织实现数据驱动决策。书中强调治理与架构、风险管理的协同,提出数据控制图、质量标签化等创新实践,适用于企业数据管理者、IT专业人员及业务领导者,是推动数据治理落地的实用宝典。 数据治理是一项涉及组织内所有利益相关者的任务,其目的在于确保数据资产的管理有序、有效,并为整个组织提供支持。数据治理的核心在于建立一套全面的管理机制,确保数据从生成到存储、再到使用的全过程中,数据的可用性、安全性、一致性及合规性都得到妥善维护。 数据治理的关键组成部分包括数据所有权的明确、数据质量的控制、数据安全的保障、数据生命周期的管理以及数据架构的设计。良好的数据治理能够帮助企业建立信任,提高运营效率,降低风险,并为数据驱动的决策提供支持。 在数据治理框架的构建中,操作手册形式的指南提供了明确的步骤和方法。需要定义不同角色及其职责,如数据所有者、数据管理者、数据消费者等。角色定义之后,接下来是流程设计,包括数据收集、处理、存档和销毁等流程的设计,以及各流程的执行标准和规则。 数据编目是数据治理中的一项基础性工作,它涉及对组织内所有数据资产的详细记录和分类。这有助于识别和理解不同数据集的来源、格式、用途和价值等重要信息。主数据管理(MDM)则聚焦于维护组织的核心数据的完整性和准确性,如客户、产品、供应商等关键业务实体的数据。 业务术语表的建设有助于统一组织内的数据语言,确保不同部门之间在数据解释和使用上的一致性。这一工作的完成,不仅提高了数据共享的效率,还有助于减少因术语歧义而产生的沟通成本。 数据治理还与风险管理紧密相关,因为有效的治理机制能够及时发现和缓解数据相关的风险,包括数据泄露、数据损坏、数据不一致等。在实践当中,数据治理的实施需要依赖一定的评估模型,通过这些模型可以对数据治理的有效性进行量化评估,从而持续优化和改进治理实践。 在数据治理的实施中,创新实践如数据控制图和质量标签化等工具被提出来提高数据质量。数据控制图是一种将数据流程可视化的方法,有助于快速识别问题环节,提升数据流转的效率;而质量标签化则通过给数据打上质量标签来直观地显示数据质量水平,方便数据治理人员和数据用户做出更加明智的决策。 本书《数据治理实战指南》的主要受众包括企业数据管理者、IT专业人员及业务领导者。这本实战手册为这些利益相关者提供了可操作性强的方法论,协助他们将数据治理的原则和方法实际应用到组织运营中,从而推动数据治理在企业中的实际落地,实现数据驱动的业务增长和决策优化。 此外,书中还结合了行业案例和评估模型来增强其实用性,帮助读者更好地理解数据治理在真实场景中的应用效果,以及如何根据自身组织的特点来调整和优化数据治理策略。这些案例和模型不仅为读者提供了学习的参考,同时也提供了一种评估自身数据治理实施效果的手段。 《数据治理实战指南》是一本全面且深入的实用工具书,它不仅仅关注理论的探讨,更加注重于如何在实际工作中落地生根,对于有志于提升组织数据管理水平的读者来说,这将是一本不可或缺的指南。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明