基于lDA模型的主题词抽取

上传者: fuyimin12 | 上传时间: 2022-02-10 23:05:11 | 文件大小: 129KB | 文件类型: -
以 LDA 模型表示文本词汇的概率分布,通过香农信息抽取体现主题的关键词。采用背景词汇聚类及主题词联想的方式将主题词 扩充到待分析文本之外,尝试挖掘文本的主题内涵。模型拟合基于快速 Gibbs 抽样算法进行。实验结果表明,快速 Gibbs 算法的速度约比 传统 Gibbs 算法高 5 倍,准确率和抽取效率均较高。

文件下载

评论信息

  • qq_36827644 :
    什么用,没代码
    2019-04-13

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明