上传者: hao_wujing
|
上传时间: 2025-06-23 16:07:52
|
文件大小: 4.14MB
|
文件类型: PDF
内容概要:本文介绍了 AdaRevD (Adaptive Patch Exiting Reversible Decoder),一种用于增强图像去模糊网络(如NAFNet 和 UFPNet)的新型多子解码器架构。为解决现有方法因轻量化解码器限制了模型性能这一瓶颈,提出了一种可逆结构和适应性退出分类器。论文详细阐述了 AdaRevD 设计背后的动机与创新点:包括重构训练后的编码权重来扩大单一解码器的容量,并保持低显存消耗的能力。该模型在多尺度特征分离方面表现优异,能从低层次到高层次逐渐提取模糊信息,还特别加入了一个自适应分类器来判断输入模糊块的程度,使其可以根据预测的结果提前在特定子解码层退出以加快速度。实验表明,在GoPro数据集上达到了平均峰值信噪比 (PSNR) 的提升。此外,通过对不同子解码器输出之间的比较发现,不同退化程度的模糊区块有不同的修复难易程度,验证了AdaRevD对于不同模糊级别的有效性和高效性。
适用人群:适用于对深度学习和图像恢复有一定认识的专业人士和技术研究人员。对于那些关注提高图像处理效率、改进现有去模糊技术和追求高性能GPU利用率的研究人员尤为有用。