Sparse and redundant representations

上传者: hustczh | 上传时间: 2022-02-14 11:35:27 | 文件大小: 6.28MB | 文件类型: -
Compressed-Sensing is a recent branch that separated from sparse and redundant representations, becoming a center of interest of its own. Exploiting sparse representation of signals, their sampling can be made far more eective compared to the classical Nyquist-Shannon sampling. In a recent work that emerged in 2006 by Emmanuel Candes, Justin Romberg, Terence Tao, David Donoho, and others that followed, the theory and practice of this field were beautifully formed, sweeping many researchers and practitioners in excitement. The impact this field has is immense, strengthened by the warm hug by information-theorists, leading mathematicians, and others. So popular has this field become that many confuse it with being the complete story of sparse representation modeling. In this book I discuss the branch of activity on Compressed-Sensing very briefly, and mostly so as to tie it to the more general results known in sparse representation theory. I believe that the accumulated knowledge on compressed-sensing could easily fill a separate book.

文件下载

评论信息

  • u010668083 :
    非常清楚的pdf书籍
    2014-11-03

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明