AOD-Net去雾网络Python源代码(pytorch)

上传者: linkunpeng_ | 上传时间: 2021-03-30 16:01:30 | 文件大小: 2MB | 文件类型: ZIP
AOD-Net去雾网络Python源代码(pytorch),通过卷积神经网络对雾霾图像进行去雾,通过pytorch进行实现

文件下载

资源详情

[{"title":"( 14 个子文件 2MB ) AOD-Net去雾网络Python源代码(pytorch)","children":[{"title":"AOD-Net-master","children":[{"title":"README.md <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"AOD-Net with PONO","children":[{"title":"README.md <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"pono_train.py <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"ponomodels.zip <span style='color:#111;'> 214.78KB </span>","children":null,"spread":false},{"title":"run_pono_train.sh <span style='color:#111;'> 644B </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"test","children":[{"title":"test.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"test_template.prototxt <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false}],"spread":true},{"title":"AOD_Net.caffemodel <span style='color:#111;'> 8.71KB </span>","children":null,"spread":false},{"title":"AOD-Net_result.png <span style='color:#111;'> 94.45KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"result","children":[{"title":"1 <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true},{"title":"img","children":[{"title":"canyon.jpg <span style='color:#111;'> 843.65KB </span>","children":null,"spread":false},{"title":"gugong.jpg <span style='color:#111;'> 640.00KB </span>","children":null,"spread":false},{"title":"1 <span style='color:#111;'> 1B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

  • HongweiMaWS :
    下载的文件显示已损坏?
    2021-04-17

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明