上传者: m0_38073539
|
上传时间: 2025-09-09 15:29:20
|
文件大小: 81KB
|
文件类型: DOCX
随着网络技术的飞速发展,网络环境变得日益复杂,网络攻击和恶意软件等安全威胁日益增多。传统的基于静态规则的网络异常检测方法已经无法满足对动态变化网络环境的安全需求,因此,基于机器学习的网络异常流量分析系统应运而生。该系统利用机器学习的自学习、自演化特性,适应复杂多变的网络环境,能够有效检测出未知异常和攻击类型,满足实时准确检测的需求。
系统的核心在于使用机器学习方法对异常流量进行判别,并设计异常流量检测模型。通过对HTTP请求头字段进行特征提取,系统形成了一个包含多维特征的特征库,并将其应用于高斯混合模型(Gaussian Mixed Model,简称GMM)中。高斯混合模型是用高斯概率密度函数对事物进行精确量化,通过多个单一高斯模型的加权和进行拟合。在对样本概率密度分布进行估计时,采用的模型是由几个高斯模型的加权和构成的。每个高斯模型代表了一个类(Cluster),通过计算样本在各个类上的概率,选取概率最大的类作为判决结果。
高斯混合模型的训练涉及到期望最大(Expectation Maximization,简称EM)算法,这是一种从不完全数据集中求解概率模型参数的最大似然估计方法。与K-means算法相比,EM算法在达到收敛之前需要更多的迭代计算,因此在训练高斯混合模型时,通常会使用K-means算法作为初始化值,然后用EM算法进行迭代求解。
在异常流量检测方面,系统首先通过数据预处理,包括样本收集、HTTP流量提取和数据集处理等步骤。数据集主要来源于UNSW-NB15数据集和恶意样本。UNSW-NB15数据集包含了正常的上网流量和异常流量,用于系统学习和测试。恶意样本则用于训练模型,以便能够区分正常流量和恶意流量。
在实际应用中,系统首先根据HTTP请求头部字段提取特征,然后将特征信息保存在CSV文件中。数据集处理过程中,利用UNSW-NB15数据集中的恶意流量标记集,提取HTTP异常流量,并以CSV格式存储所需字段信息。此外,在CSV格式文件中新增字段,用数字1表示恶意流量,用数字0表示正常流量,方便机器学习模型对数据集进行训练和检测。
机器学习模型在高斯混合模型中的应用,不仅能够有效提取多维特征并进行异常流量检测,而且经过测试证明特征计算方法在高斯混合模型中有较好的准确率和召回率,从而保证了系统的检测性能。该系统的成功应用,为网络异常流量分析提供了新的思路和方法,对于保障网络安全具有重要的实际意义。