上传者: m0_59140170
|
上传时间: 2025-09-01 15:39:01
|
文件大小: 4.03MB
|
文件类型: PDF
在电力电子技术飞速发展的当下,磁性元件作为功率变换器中的关键部分,其性能直接决定了系统的效率、功率密度与可靠性。特别是磁芯损耗,在高频高效的应用中占有相当比重。准确评估磁芯损耗,对优化设计和提升转换效率至关重要。本文采用实验数据和数学建模相结合的方法,构建了磁芯损耗的预测模型。
针对不同励磁波形的精确识别问题,利用四种磁芯材料的数据集,分析了磁通密度波形的时域特征,并进行傅里叶变换至频域提取谐波。运用FNN构建MLP模型,用前八个谐波负值作为特征数据进行训练,但效果不佳。随后,采用信号处理与机器学习结合的THD-MLP模型,准确率达到了100%,并成功预测了数据。
研究了温度对磁芯损耗的影响,对同一种材料在不同温度下的损耗数据进行预处理和初步分析,结合斯坦麦茨方程,通过最小二乘回归拟合得到了修正后的损耗方程。该方程预测效果良好,相关系数达到0.997678,RMSE为11822.8。
再者,为探究温度、励磁波形和磁芯材料对损耗的综合影响,首先对数据进行分类和特征提取,构建了磁损值与这些因素的多项式模型,并用最小二乘法拟合获得最佳参数。通过枚举法找到了最小磁损值对应的条件,预测在特定条件下的最小磁芯损耗。
在分析了温度、励磁波形和材料对磁芯损耗的独立及协同影响后,发现传统回归方法在处理复杂非线性关系时存在局限,预测精度不足。因此,将最小二乘回归结果作为新特征,与MLP结合进行非线性回归建模,引入对数变换处理损耗数据,最终得到与真实数据高度相关的预测结果。
为计算最小磁芯损耗和传输磁能最大时的条件值,构建了基于预测模型的目标函数,并转化为最小值问题。利用遗传算法进行求解,确定了磁芯损耗和传输磁能的最优值。整个研究过程运用了多种技术和算法,包括最小二乘回归、多层感知器MLP模型、傅里叶变换、FNN以及遗传算法。
关键词包括:磁芯损耗、最小二乘回归、多层感知器MLP模型、机器学习、遗传算法等。
问题五的求解过程表明,在电力电子变换器优化设计中,准确评估磁性元件性能,特别是磁芯损耗,对于提高整体系统的效率和可靠性具有重要意义。通过实验数据和数学建模相结合,构建的预测模型能够有效评估磁芯损耗,为磁性元件设计和功率转换效率优化提供有力支持。同时,通过模型预测,可以确定最优的工作参数,为磁性元件的应用提供理论基础和实际操作指导。整体研究过程中,综合利用了现代数学建模技术和先进的机器学习方法,展现了跨学科研究在解决实际工程问题中的潜力和价值。