(源码)基于PyTorch框架的图像分类系统.zip

上传者: m0_62153576 | 上传时间: 2025-09-27 16:17:33 | 文件大小: 3.15MB | 文件类型: ZIP
# 基于PyTorch框架的图像分类系统 ## 项目简介 本项目聚焦于基于PyTorch框架开展图像分类模型的训练工作。项目功能丰富,涵盖了模型的定义、训练、验证、测试以及模型参数的保存与加载等一系列操作。训练过程采用CIFAR 10数据集,该数据集包含10个类别的彩色图像,能够为模型提供丰富的训练素材。项目构建了简单的卷积神经网络模型,搭配交叉熵损失函数和随机梯度下降优化器进行训练,以实现精准的图像分类。 ## 项目的主要特性和功能 1. 数据加载与预处理借助PyTorch的DataLoader模块,从本地目录高效加载CIFAR10数据集,并对数据进行预处理,确保其符合模型输入要求。 2. 模型定义运用PyTorch的nn模块精心定义神经网络模型,模型包含多个卷积层、池化层和全连接层,具备强大的特征提取和分类能力。

文件下载

资源详情

[{"title":"( 47 个子文件 3.15MB ) (源码)基于PyTorch框架的图像分类系统.zip","children":[{"title":"src","children":[{"title":"train_model.py <span style='color:#111;'> 5.01KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"learning","children":[{"title":"conv2d-use.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"nn-linear.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"transforms-test.py <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"nn-optim.py <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"my_model.py <span style='color:#111;'> 5.48KB </span>","children":null,"spread":false},{"title":"nn_relu.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"model_load.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"model-modify.py <span style='color:#111;'> 908B </span>","children":null,"spread":false},{"title":"model_save.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"my_dataset.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"nn.seq.py <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"transforms-use.py <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"conv2d-test.py <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"max_pool-test.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"tensorboard-test.py <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false}],"spread":false},{"title":"imgs","children":[{"title":"airplane.png <span style='color:#111;'> 30.91KB </span>","children":null,"spread":false},{"title":"ship.png <span style='color:#111;'> 21.24KB </span>","children":null,"spread":false},{"title":"readme","children":[{"title":"最大池化前图像.png <span style='color:#111;'> 136.98KB </span>","children":null,"spread":false},{"title":"pytorch下载参数截图.png <span style='color:#111;'> 70.33KB </span>","children":null,"spread":false},{"title":"airplane.png <span style='color:#111;'> 30.91KB </span>","children":null,"spread":false},{"title":"Eq-卷积核2.svg <span style='color:#111;'> 7.10KB </span>","children":null,"spread":false},{"title":"分类.png <span style='color:#111;'> 28.65KB </span>","children":null,"spread":false},{"title":"ship.png <span style='color:#111;'> 21.24KB </span>","children":null,"spread":false},{"title":"Eq-Sigmoid.svg <span style='color:#111;'> 10.42KB </span>","children":null,"spread":false},{"title":"Sigmoid.png <span style='color:#111;'> 20.63KB </span>","children":null,"spread":false},{"title":"Eq-卷积核3.svg <span style='color:#111;'> 7.77KB </span>","children":null,"spread":false},{"title":"add_graph.png <span style='color:#111;'> 41.41KB </span>","children":null,"spread":false},{"title":"卷积前的图像.png <span style='color:#111;'> 135.65KB </span>","children":null,"spread":false},{"title":"Eq-卷积核4.svg <span style='color:#111;'> 9.01KB </span>","children":null,"spread":false},{"title":"卷积操作.png <span style='color:#111;'> 2.00MB </span>","children":null,"spread":false},{"title":"dog.png <span style='color:#111;'> 47.17KB </span>","children":null,"spread":false},{"title":"dog2.png <span style='color:#111;'> 27.44KB </span>","children":null,"spread":false},{"title":"linear.jpg <span style='color:#111;'> 264.06KB </span>","children":null,"spread":false},{"title":"truck.png <span style='color:#111;'> 32.81KB </span>","children":null,"spread":false},{"title":"最大池化后图像.png <span style='color:#111;'> 19.10KB </span>","children":null,"spread":false},{"title":"Eq-最大池化1.svg <span style='color:#111;'> 15.95KB </span>","children":null,"spread":false},{"title":"Eq-ReLU.svg <span style='color:#111;'> 8.66KB </span>","children":null,"spread":false},{"title":"卷积后的图像.png <span style='color:#111;'> 162.16KB </span>","children":null,"spread":false},{"title":"Eq-卷积核1.svg <span style='color:#111;'> 16.64KB </span>","children":null,"spread":false}],"spread":false},{"title":"dog.png <span style='color:#111;'> 47.17KB </span>","children":null,"spread":false},{"title":"dog2.png <span style='color:#111;'> 27.44KB </span>","children":null,"spread":false},{"title":"truck.png <span style='color:#111;'> 32.81KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 5.06KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明