基于MLP的简单文本情绪分类

上传者: m0_63975371 | 上传时间: 2025-04-27 20:17:51 | 文件大小: 595KB | 文件类型: RAR
这个模型是一个基于MLP的简单文本情绪分类模型,使用了线性层、激活函数和Softmax函数构建网络结构。通过交叉熵损失函数进行训练,并使用Adam优化算法自动调节学习率。训练过程中记录了损失值,并在每个3000步后对校验集进行验证。该模型可以用于对文本情绪进行分类,并评估模型的准确率和损失值。其中包含数据收集、数据预处理、构建模型、训练模型、测试模型、观察模型表现、保存模型

文件下载

资源详情

[{"title":"( 23 个子文件 595KB ) 基于MLP的简单文本情绪分类","children":[{"title":"文本分析","children":[{"title":"names","children":[{"title":"Italian.txt <span style='color:#111;'> 5.52KB </span>","children":null,"spread":false},{"title":"German.txt <span style='color:#111;'> 5.48KB </span>","children":null,"spread":false},{"title":"Korean.txt <span style='color:#111;'> 423B </span>","children":null,"spread":false},{"title":"Portuguese.txt <span style='color:#111;'> 554B </span>","children":null,"spread":false},{"title":"Japanese.txt <span style='color:#111;'> 7.44KB </span>","children":null,"spread":false},{"title":"Dutch.txt <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"Russian.txt <span style='color:#111;'> 83.60KB </span>","children":null,"spread":false},{"title":"Chinese.txt <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"Greek.txt <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"English.txt <span style='color:#111;'> 26.49KB </span>","children":null,"spread":false},{"title":"Vietnamese.txt <span style='color:#111;'> 339B </span>","children":null,"spread":false},{"title":"French.txt <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"Spanish.txt <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"Czech.txt <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"Polish.txt <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"Arabic.txt <span style='color:#111;'> 12.88KB </span>","children":null,"spread":false},{"title":"Irish.txt <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"Scottish.txt <span style='color:#111;'> 752B </span>","children":null,"spread":false}],"spread":false},{"title":"bow.mdl <span style='color:#111;'> 281.57KB </span>","children":null,"spread":false},{"title":"Untitled.ipynb <span style='color:#111;'> 172.22KB </span>","children":null,"spread":false},{"title":"good.txt <span style='color:#111;'> 565.93KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Untitled-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":true},{"title":"bad.txt <span style='color:#111;'> 298.03KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明