上传者: m0_64372178
|
上传时间: 2025-05-12 08:35:30
|
文件大小: 14KB
|
文件类型: DOCX
《矿大2023年人工智能原理复习指南》
人工智能作为一门研究领域,涵盖了广泛的理论和技术。在矿大的课程中,重点强调了以下几个关键章节的内容:
1. 绪论:这一部分涉及到人工智能的起源和发展,包括三个主要学派的代表人物、他们的观点以及主要贡献。其中,图灵是计算理论的奠基人,他的贡献在于提出了图灵机模型,为现代计算机科学奠定了理论基础。
2. 知识表示:这是人工智能中表达和存储知识的关键。一阶谓词逻辑表示法用于精确表达复杂的事实和规则;产生式表示法虽然不作为考试内容,但在某些特定的应用中仍具有价值;语义网络和框架表示法则常用于结构化数据的表示,其中框架表示法更注重具体情境和背景知识的描述。
3. 确定性推理:这部分主要探讨如何从已知事实推导出新知识。推理的分类包括正向推理、反向推理和双向推理。永真性和可满足性是谓词公式的基本性质,而置换与合一、归结演绎推理则是实现推理的重要工具。
4. 搜索策略:在解决复杂问题时,搜索策略至关重要。包括一般图搜索方法、盲目搜索(如BFS、DFS、有界DFS和迭代加深搜索)以及启发式搜索(如A*算法,其评估函数设计和迭代加深A*的差异)。此外,博弈论中的极大极小过程是理解智能决策的重要概念。
5. 不确定性推理:面对模糊和不完整的信息,不确定性推理显得尤为重要。主观贝叶斯方法处理概率不确定性,可信度方法用于处理非概率不确定性,而证据理论则提供了一种更全面的不确定信息处理框架。
6. 机器学习:归纳学习是机器学习的基础,它包括决策树学习,如ID3算法,以及K近邻算法。这些算法的学习过程和应用场景是理解机器学习能力的关键。
考试题型包括填空题、简答题、计算题、证明题和综合题,涵盖了以上各个章节的重点知识。例如,启发式搜索的原理和应用、决策树的构建、不确定性推理的计算和证明,以及在复杂问题中的应用等。
复习矿大2023年人工智能原理考试,应重点掌握上述各章节的核心概念、方法和算法,并能够灵活应用到各种问题中。同时,理解和运用这些知识来解决实际问题的能力也是考试的关键。