残差网络代码

上传者: memories_sunset | 上传时间: 2023-04-23 15:12:44 | 文件大小: 11.33MB | 文件类型: ZIP
适合学习的ResNet残差网络,适合配合论文一起使用,非常适合初学者阅读的经典代码。

文件下载

资源详情

[{"title":"( 103 个子文件 11.33MB ) 残差网络代码","children":[{"title":"reddit-comments-2015-08.csv <span style='color:#111;'> 7.26MB </span>","children":null,"spread":false},{"title":"vae.ipynb <span style='color:#111;'> 954.90KB </span>","children":null,"spread":false},{"title":"tf_rnn.ipynb <span style='color:#111;'> 568.38KB </span>","children":null,"spread":false},{"title":"tf_autoencoder.ipynb <span style='color:#111;'> 263.05KB </span>","children":null,"spread":false},{"title":"GAN_simple.ipynb <span style='color:#111;'> 225.05KB </span>","children":null,"spread":false},{"title":"tiger.jpeg <span style='color:#111;'> 11.98KB </span>","children":null,"spread":false},{"title":"puzzle.jpeg <span style='color:#111;'> 8.68KB </span>","children":null,"spread":false},{"title":"street.jpg <span style='color:#111;'> 437.08KB </span>","children":null,"spread":false},{"title":"car.jpg <span style='color:#111;'> 351.11KB </span>","children":null,"spread":false},{"title":"car2.jpg <span style='color:#111;'> 351.11KB </span>","children":null,"spread":false},{"title":"rand_img_epoch_80.jpg <span style='color:#111;'> 285.02KB </span>","children":null,"spread":false},{"title":"img_epoch20.jpg <span style='color:#111;'> 192.88KB </span>","children":null,"spread":false},{"title":"dog.jpg <span style='color:#111;'> 159.92KB </span>","children":null,"spread":false},{"title":"eagle.jpg <span style='color:#111;'> 138.56KB </span>","children":null,"spread":false},{"title":"horses.jpg <span style='color:#111;'> 130.37KB </span>","children":null,"spread":false},{"title":"person.jpg <span style='color:#111;'> 111.21KB </span>","children":null,"spread":false},{"title":"person.jpg <span style='color:#111;'> 111.21KB </span>","children":null,"spread":false},{"title":"weichat.jpg <span style='color:#111;'> 110.87KB </span>","children":null,"spread":false},{"title":"cat.jpg <span style='color:#111;'> 57.12KB </span>","children":null,"spread":false},{"title":"654362565405877642.jpg <span style='color:#111;'> 42.38KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.80KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 818B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 736B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 4B </span>","children":null,"spread":false},{"title":"rt-polarity.neg <span style='color:#111;'> 598.15KB </span>","children":null,"spread":false},{"title":"model.png <span style='color:#111;'> 644.72KB </span>","children":null,"spread":false},{"title":"DBN_results.png <span style='color:#111;'> 152.38KB </span>","children":null,"spread":false},{"title":"lstm_regression_results.png <span style='color:#111;'> 79.66KB </span>","children":null,"spread":false},{"title":"filters_corruption_0.png <span style='color:#111;'> 75.90KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_0.png <span style='color:#111;'> 74.96KB </span>","children":null,"spread":false},{"title":"10original_and_10samples.png <span style='color:#111;'> 74.68KB </span>","children":null,"spread":false},{"title":"filters_corruption_30.png <span style='color:#111;'> 73.59KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_1.png <span style='color:#111;'> 72.99KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_2.png <span style='color:#111;'> 71.54KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_3.png <span style='color:#111;'> 70.49KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_4.png <span style='color:#111;'> 69.67KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_5.png <span style='color:#111;'> 68.98KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_6.png <span style='color:#111;'> 68.41KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_7.png <span style='color:#111;'> 67.96KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_8.png <span style='color:#111;'> 67.56KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_9.png <span style='color:#111;'> 67.20KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_10.png <span style='color:#111;'> 66.90KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_11.png <span style='color:#111;'> 66.59KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_12.png <span style='color:#111;'> 66.28KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_13.png <span style='color:#111;'> 66.00KB </span>","children":null,"spread":false},{"title":"10filters_at_epoch_14.png <span style='color:#111;'> 65.78KB </span>","children":null,"spread":false},{"title":"new_filters_at_epoch_14.png <span style='color:#111;'> 65.03KB </span>","children":null,"spread":false},{"title":"new_original_and_10samples.png <span style='color:#111;'> 56.21KB </span>","children":null,"spread":false},{"title":"epoch3_g_images.png <span style='color:#111;'> 33.56KB </span>","children":null,"spread":false},{"title":"rnn_language_model.png <span style='color:#111;'> 29.50KB </span>","children":null,"spread":false},{"title":"rt-polarity.pos <span style='color:#111;'> 611.71KB </span>","children":null,"spread":false},{"title":"imagenet_classes.py <span style='color:#111;'> 21.20KB </span>","children":null,"spread":false},{"title":"ssd_300_vgg.py <span style='color:#111;'> 11.44KB </span>","children":null,"spread":false},{"title":"rbm.py <span style='color:#111;'> 11.37KB </span>","children":null,"spread":false},{"title":"yolo_tf.py <span style='color:#111;'> 11.27KB </span>","children":null,"spread":false},{"title":"resent.py <span style='color:#111;'> 11.26KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 11.19KB </span>","children":null,"spread":false},{"title":"GAN_simple.py <span style='color:#111;'> 11.05KB </span>","children":null,"spread":false},{"title":"ptb_lstm_model.py <span style='color:#111;'> 9.94KB </span>","children":null,"spread":false},{"title":"vgg16.py <span style='color:#111;'> 9.75KB </span>","children":null,"spread":false},{"title":"densenet.py <span style='color:#111;'> 9.70KB </span>","children":null,"spread":false},{"title":"DCGAN.py <span style='color:#111;'> 8.93KB </span>","children":null,"spread":false},{"title":"MobileNet.py <span style='color:#111;'> 8.39KB </span>","children":null,"spread":false},{"title":"rnn_numpy.py <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false},{"title":"vae_mnist.py <span style='color:#111;'> 7.71KB </span>","children":null,"spread":false},{"title":"text_cnn.py <span style='color:#111;'> 7.11KB </span>","children":null,"spread":false},{"title":"lstm_regression.py <span style='color:#111;'> 6.80KB </span>","children":null,"spread":false},{"title":"input_data.py <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"ResNet50.py <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"gbrbm.py <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false},{"title":"cnn.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"sda.py <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"dbn.py <span style='color:#111;'> 5.90KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 5.75KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false},{"title":"visualization.py <span style='color:#111;'> 5.04KB </span>","children":null,"spread":false},{"title":"da.py <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 4.75KB </span>","children":null,"spread":false},{"title":"ShuffleNet.py <span style='color:#111;'> 4.73KB </span>","children":null,"spread":false},{"title":"mlp.py <span style='color:#111;'> 4.50KB </span>","children":null,"spread":false},{"title":"rnn_tensorflow.py <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false},{"title":"ssd_anchors.py <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"reader.py <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"logisticRegression.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"input_data_rnn.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"SqueezeNet.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"train_cnn.py <span style='color:#111;'> 2.78KB </span>","children":null,"spread":false},{"title":"data_helpers.py <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"ssd_layers.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"demo.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"detect_ops.py <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"SSD_demo.py <span style='color:#111;'> 929B </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 590B </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 7B </span>","children":null,"spread":false},{"title":"ptb.train.txt <span style='color:#111;'> 4.87MB </span>","children":null,"spread":false},{"title":"ptb.test.txt <span style='color:#111;'> 439.40KB </span>","children":null,"spread":false},{"title":"ptb.valid.txt <span style='color:#111;'> 390.41KB </span>","children":null,"spread":false},{"title":"var_name.txt <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明