GPU版本卷积神经网络

上传者: narutowz | 上传时间: 2022-09-16 22:23:59 | 文件大小: 2.22MB | 文件类型: ZIP
采用matlab写的GPU版本卷积神经网络,使用了maxpooling等技术,matlab版本2013a.

文件下载

资源详情

[{"title":"( 36 个子文件 2.22MB ) GPU版本卷积神经网络","children":[{"title":"GPU版本卷积神经网络","children":[{"title":"【源码使用必读】.url <span style='color:#111;'> 55B </span>","children":null,"spread":false},{"title":"convlutional_network_GPU","children":[{"title":"models","children":[{"title":"mlcnn.m <span style='color:#111;'> 40.32KB </span>","children":null,"spread":false}],"spread":true},{"title":"startLearning.m <span style='color:#111;'> 289B </span>","children":null,"spread":false},{"title":"testLabels2.mat <span style='color:#111;'> 17.91KB </span>","children":null,"spread":false},{"title":"testData2.mat <span style='color:#111;'> 1.09MB </span>","children":null,"spread":false},{"title":"MaxPooling","children":[{"title":"MaxPooling.mexw64 <span style='color:#111;'> 13.00KB </span>","children":null,"spread":false},{"title":"MaxPooling.cpp <span style='color:#111;'> 8.69KB </span>","children":null,"spread":false},{"title":".settings","children":[{"title":"org.eclipse.core.resources.prefs <span style='color:#111;'> 91B </span>","children":null,"spread":false},{"title":"org.eclipse.cdt.managedbuilder.core.prefs <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"README <span style='color:#111;'> 960B </span>","children":null,"spread":false},{"title":".project <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"MaxPooling.m~ <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":".cproject <span style='color:#111;'> 10.83KB </span>","children":null,"spread":false},{"title":"MaxPooling.m <span style='color:#111;'> 404B </span>","children":null,"spread":false},{"title":"MaxPooling.mexmaci64 <span style='color:#111;'> 29.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"trainData2.mat <span style='color:#111;'> 1.09MB </span>","children":null,"spread":false},{"title":"demo","children":[{"title":"demoMLCNN.m <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"trainLabels2.mat <span style='color:#111;'> 17.70KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"softRect.m <span style='color:#111;'> 224B </span>","children":null,"spread":false},{"title":"sc.m <span style='color:#111;'> 146B </span>","children":null,"spread":false},{"title":"checkNNGradients.m <span style='color:#111;'> 6.41KB </span>","children":null,"spread":false},{"title":"gpuDistribute.m <span style='color:#111;'> 262B </span>","children":null,"spread":false},{"title":"loadData.m <span style='color:#111;'> 793B </span>","children":null,"spread":false},{"title":"checkMLNNGradients.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"dataProcessing2.m <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"sigmoid.m <span style='color:#111;'> 69B </span>","children":null,"spread":false},{"title":"dataProcessing.m <span style='color:#111;'> 4.34KB </span>","children":null,"spread":false},{"title":"gpuGather.m <span style='color:#111;'> 403B </span>","children":null,"spread":false},{"title":"subplottight.m <span style='color:#111;'> 897B </span>","children":null,"spread":false},{"title":"myScatter.m <span style='color:#111;'> 920B </span>","children":null,"spread":false},{"title":"maxPooling.m <span style='color:#111;'> 889B </span>","children":null,"spread":false},{"title":"notDefined.m <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"softMax.m <span style='color:#111;'> 432B </span>","children":null,"spread":false},{"title":"medalConstants.m <span style='color:#111;'> 430B </span>","children":null,"spread":false},{"title":"preProcessData.m <span style='color:#111;'> 255B </span>","children":null,"spread":false}],"spread":false},{"title":"readme.txt <span style='color:#111;'> 111B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明