基于MATLAB实现传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法

上传者: paofuluolijiang | 上传时间: 2025-05-03 12:02:37 | 文件大小: 79.92MB | 文件类型: RAR
人工智能 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。 五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。 随着数字图像处理技术的迅猛发展,图像去噪成为了一个热门的研究领域。在众多图像去噪算法中,传统算法因其简单、直观、易于实现而得到广泛应用。然而,随着深度学习技术的兴起,基于深度卷积神经网络的去噪算法开始崭露头角,尤其在处理含有复杂噪声的图像时显示出更大的优势。本篇文章将深入探讨基于MATLAB实现的传统图像去噪算法以及基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行对比实验。 传统图像去噪算法主要包括均值滤波、中值滤波、非局部均值滤波(NLM)以及三维块匹配滤波(BM3D)。这些算法各有其特点和应用场景。 均值滤波是一种简单有效的线性滤波器,它通过将图像中每个像素点的值替换为其邻域内像素点值的平均数来实现去噪。这种方法适用于去除高斯噪声,但会模糊图像细节,因为它是基于局部像素平均信息来进行去噪的。 中值滤波是一种非线性滤波技术,它将每个像素点的值替换为其邻域内像素点值的中位数。中值滤波在去除椒盐噪声方面效果显著,因为它不受个别噪声点的影响,但在处理含有大量细节的图像时可能会损失部分细节信息。 非局部均值滤波(NLM)是一种基于图像块相似性的去噪算法,它利用图像中的冗余信息,通过寻找图像中与当前处理块相似的其他块的加权平均来完成去噪。NLM算法在去除噪声的同时能较好地保持图像边缘和细节,但计算量较大,处理速度较慢。 三维块匹配滤波(BM3D)是一种先进的图像去噪算法,通过分组相似的图像块,利用三维变换去除噪声。BM3D算法通过两次协同过滤实现高效的图像去噪,其性能往往优于其他传统算法,尤其是在处理较为复杂的噪声时。 然而,传统图像去噪算法在处理含有大量噪声或需要高度去噪保留图像细节的场景时,往往效果有限。随着深度学习技术的出现,基于深度卷积神经网络的图像去噪算法成为研究的热点。深度学习算法能够从大量带噪声的图像中自动学习到有效的特征表示,并用于去噪任务。 在本篇文章中,作者实现了基于深度卷积神经网络的DnCNN图像去噪算法,并在Set12数据集上进行了测试。DnCNN是一种端到端的深度神经网络结构,它通过逐层学习图像中的噪声模式,可以有效地从带噪声的图像中去除噪声,同时保持图像的清晰度和边缘细节。DnCNN算法在处理高斯噪声、泊松噪声以及混合噪声等方面都表现出色,是目前图像去噪领域的一个重要突破。 Set12数据集包含了多种类型的带噪声图像,包括自然场景、动物、植物等,非常适合用于测试不同去噪算法的性能。在实验中,作者并未保存去噪后的结果,而是提供了运行过程中的去噪前和去噪后的图像对比,使得读者可以在实验中直观地观察到算法效果。 通过在Set12数据集上对五种算法进行测试,我们可以观察到不同算法对于不同类型噪声的处理能力。传统算法在去除简单噪声时效果尚可,但在细节保持和复杂噪声处理方面往往不尽人意。而基于深度学习的DnCNN算法在这些方面表现更为出色,即便是在噪声水平较高的情况下也能保持较高的图像质量。 传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法各有千秋,前者简单易实现,后者性能卓越。在实际应用中,可以根据具体需求选择合适的去噪方法。随着深度学习技术的不断进步,未来一定会有更多高效、鲁棒的去噪算法被开发出来,以满足人们对于高质量图像的需求。

文件下载

资源详情

[{"title":"( 181 个子文件 79.92MB ) 基于MATLAB实现传统图像去噪算法和基于深度卷积神经网络的DnCNN图像去噪算法","children":[{"title":"萝莉酱.jpeg <span style='color:#111;'> 119.86KB </span>","children":null,"spread":false},{"title":"萝莉酱.jpeg <span style='color:#111;'> 119.86KB </span>","children":null,"spread":false},{"title":"萝莉酱.jpeg <span style='color:#111;'> 119.86KB </span>","children":null,"spread":false},{"title":"萝莉酱.jpeg <span style='color:#111;'> 119.86KB </span>","children":null,"spread":false},{"title":"CBM3D.m <span style='color:#111;'> 27.86KB </span>","children":null,"spread":false},{"title":"VBM3D.m <span style='color:#111;'> 26.08KB </span>","children":null,"spread":false},{"title":"CVBM3D.m <span style='color:#111;'> 21.26KB </span>","children":null,"spread":false},{"title":"BM3D_CFA.m <span style='color:#111;'> 17.36KB </span>","children":null,"spread":false},{"title":"BM3DSHARP.m <span style='color:#111;'> 17.25KB </span>","children":null,"spread":false},{"title":"BM3D.m <span style='color:#111;'> 17.15KB </span>","children":null,"spread":false},{"title":"BM3DDEB_init.m <span style='color:#111;'> 16.82KB </span>","children":null,"spread":false},{"title":"BM3DDEB.m <span style='color:#111;'> 16.77KB </span>","children":null,"spread":false},{"title":"Demo_test_DnCNN3.m <span style='color:#111;'> 13.08KB </span>","children":null,"spread":false},{"title":"Demo_IDDBM3D.m <span style='color:#111;'> 8.86KB </span>","children":null,"spread":false},{"title":"Cal_PSNRSSIM.m <span style='color:#111;'> 6.20KB </span>","children":null,"spread":false},{"title":"function_LPAKernelMatrixTheta.m <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"function_CreateLPAKernels.m <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"vl_simplenn.m <span style='color:#111;'> 4.32KB </span>","children":null,"spread":false},{"title":"Demo_FDnCNN_Color_Clip.m <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"Demo_FDnCNN_Color.m <span style='color:#111;'> 3.63KB </span>","children":null,"spread":false},{"title":"Demo_FDnCNN_Gray.m <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false},{"title":"Demo_FDnCNN_Gray_Clip.m <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"Demo_test_DnCNN.m <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"function_Window2D.m <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"Demo_test_DnCNN_C.m <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"Demo_test_CDnCNN_Specific.m <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"avefilt.m <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"medianfilt.m <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"demo_BM3DSAPCA.m <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"vl_ffdnet_matlab.m <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"NLmeansfilt.m <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"vl_ffdnet_concise.m <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"main.m <span style='color:#111;'> 1.00KB </span>","children":null,"spread":false},{"title":"vl_simplenn_mergebnorm.m <span style='color:#111;'> 1018B </span>","children":null,"spread":false},{"title":"simplenn_matlab.m <span style='color:#111;'> 805B </span>","children":null,"spread":false},{"title":"data_augmentation.m <span style='color:#111;'> 709B </span>","children":null,"spread":false},{"title":"modcrop.m <span style='color:#111;'> 267B </span>","children":null,"spread":false},{"title":"shave.m <span style='color:#111;'> 107B </span>","children":null,"spread":false},{"title":"Merge_Bnorm_Demo.m <span style='color:#111;'> 93B </span>","children":null,"spread":false},{"title":"color_sigma=25.mat <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false},{"title":"FDnCNN_color.mat <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false},{"title":"color_sigma=50.mat <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false},{"title":"FDnCNN_Clip_color.mat <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false},{"title":"color_sigma=15.mat <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false},{"title":"color_sigma=10.mat <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false},{"title":"color_sigma=05.mat <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false},{"title":"color_sigma=35.mat <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false},{"title":"DnCNN3.mat <span style='color:#111;'> 2.64MB </span>","children":null,"spread":false},{"title":"FDnCNN_gray.mat <span style='color:#111;'> 2.64MB </span>","children":null,"spread":false},{"title":"FDnCNN_Clip_gray.mat <span style='color:#111;'> 2.64MB </span>","children":null,"spread":false},{"title":"model_sigma=20to30.mat <span style='color:#111;'> 2.64MB </span>","children":null,"spread":false},{"title":"GD_Gray_Blind.mat <span style='color:#111;'> 2.64MB </span>","children":null,"spread":false},{"title":"model_sigma=80to90.mat <span style='color:#111;'> 2.64MB </span>","children":null,"spread":false},{"title":"model_sigma=60to70.mat <span style='color:#111;'> 2.64MB </span>","children":null,"spread":false},{"title":"model_sigma=00to10.mat <span style='color:#111;'> 2.64MB </span>","children":null,"spread":false},{"title":"GD_Color_Blind.mat <span style='color:#111;'> 2.64MB </span>","children":null,"spread":false},{"title":"model_sigma=40to50.mat <span style='color:#111;'> 2.63MB </span>","children":null,"spread":false},{"title":"sigma=25_Bnorm.mat <span style='color:#111;'> 2.27MB </span>","children":null,"spread":false},{"title":"sigma=10.mat <span style='color:#111;'> 2.20MB </span>","children":null,"spread":false},{"title":"sigma=45.mat <span style='color:#111;'> 2.20MB </span>","children":null,"spread":false},{"title":"sigma=75.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=50.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=55.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=65.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=60.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=35.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=70.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=30.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=40.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=20.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=25.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"sigma=15.mat <span style='color:#111;'> 2.19MB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"Add (color) specific models.md <span style='color:#111;'> 1B </span>","children":null,"spread":false},{"title":"bm3d_thr_colored_noise.mexa64 <span style='color:#111;'> 144.48KB </span>","children":null,"spread":false},{"title":"bm3d_thr_sharpen_var.mexa64 <span style='color:#111;'> 132.05KB </span>","children":null,"spread":false},{"title":"bm3d_wiener_video.mexa64 <span style='color:#111;'> 109.02KB </span>","children":null,"spread":false},{"title":"bm3d_thr_video.mexa64 <span style='color:#111;'> 100.17KB </span>","children":null,"spread":false},{"title":"bm3d_wiener_colored_noise.mexa64 <span style='color:#111;'> 100.01KB </span>","children":null,"spread":false},{"title":"bm3d_CFA_thr.mexa64 <span style='color:#111;'> 71.41KB </span>","children":null,"spread":false},{"title":"bm3d_thr.mexa64 <span style='color:#111;'> 53.77KB </span>","children":null,"spread":false},{"title":"bm3d_CFA_wiener.mexa64 <span style='color:#111;'> 42.38KB </span>","children":null,"spread":false},{"title":"bm3d_wiener_color.mexa64 <span style='color:#111;'> 40.11KB </span>","children":null,"spread":false},{"title":"bm3d_thr_color.mexa64 <span style='color:#111;'> 38.74KB </span>","children":null,"spread":false},{"title":"bm3d_wiener.mexa64 <span style='color:#111;'> 38.23KB </span>","children":null,"spread":false},{"title":"bm3d_thr_colored_noise.mexglx <span style='color:#111;'> 117.97KB </span>","children":null,"spread":false},{"title":"bm3d_thr_sharpen_var.mexglx <span style='color:#111;'> 106.03KB </span>","children":null,"spread":false},{"title":"bm3d_wiener_video.mexglx <span style='color:#111;'> 90.03KB </span>","children":null,"spread":false},{"title":"bm3d_thr_video.mexglx <span style='color:#111;'> 86.03KB </span>","children":null,"spread":false},{"title":"bm3d_wiener_colored_noise.mexglx <span style='color:#111;'> 81.97KB </span>","children":null,"spread":false},{"title":"bm3d_CFA_thr.mexglx <span style='color:#111;'> 47.16KB </span>","children":null,"spread":false},{"title":"bm3d_thr.mexglx <span style='color:#111;'> 40.40KB </span>","children":null,"spread":false},{"title":"bm3d_wiener_color.mexglx <span style='color:#111;'> 32.20KB </span>","children":null,"spread":false},{"title":"bm3d_CFA_wiener.mexglx <span style='color:#111;'> 31.02KB </span>","children":null,"spread":false},{"title":"bm3d_thr_color.mexglx <span style='color:#111;'> 30.50KB </span>","children":null,"spread":false},{"title":"bm3d_wiener.mexglx <span style='color:#111;'> 28.23KB </span>","children":null,"spread":false},{"title":"bm3d_thr_colored_noise.mexmaci <span style='color:#111;'> 145.43KB </span>","children":null,"spread":false},{"title":"bm3d_thr_sharpen_var.mexmaci <span style='color:#111;'> 133.32KB </span>","children":null,"spread":false},{"title":"bm3d_wiener_video.mexmaci <span style='color:#111;'> 109.36KB </span>","children":null,"spread":false},{"title":"bm3d_thr_video.mexmaci <span style='color:#111;'> 101.36KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明