上传者: 43644716
|
上传时间: 2025-11-09 15:36:46
|
文件大小: 11.27MB
|
文件类型: PDF
SCI 文献资源————DeepMIH: Deep Invertible Network for Multiple Image Hiding
DeepMIH:用于多图像隐藏的深度可逆网络
摘要——多图像隐藏旨在将多个秘密图像隐藏到一个封面图像中,然后完美地恢复所有秘密图像。这种高容量的隐藏很容易导致轮廓阴影或颜色失真,这使得多图像隐藏非常具有挑战性任务在本文中,我们提出了一种新的基于可逆神经网络的多图像隐藏框架,即DeepMIH。明确地我们开发了一个可逆隐藏神经网络(IHNN),创新地将图像的隐藏和揭示建模为其前向和后向过程,使它们完全耦合和可逆。IHNN非常灵活,可以根据需要级联多次实现了对多个图像的隐藏。为了增强不可见性,我们设计了一个重要度图(IM)模块来引导当前图像基于先前的图像隐藏结果进行隐藏。此外,我们发现隐藏在高频子带中的图像倾向于实现了更好的隐藏性能,从而提出了一种低频小波损失来约束在低频子带。实验结果表明,我们的DeepMIH在在各种数据集上隐藏不可见性、安全性和恢复准确性。
【DeepMIH: 多图像隐藏的深度可逆网络】
多图像隐藏技术是信息安全领域的一个重要研究方向,其目标是将多个秘密图像无痕迹地嵌入到一个封面图像中,以便于秘密信息的传输和存储,同时确保封面图像在视觉上与原始图像几乎无法区分。然而,高容量的图像隐藏往往会导致封面图像出现轮廓阴影或颜色失真,增加了多图像隐藏的难度。针对这一挑战,研究人员提出了DeepMIH,即深度可逆网络用于多图像隐藏的框架。
DeepMIH的核心是可逆隐藏神经网络(IHNN),这是一个创新的设计,它将图像的隐藏和揭示过程建模为前向和后向过程,这两个过程是完全耦合且可逆的。这意味着可以隐藏和恢复图像而不牺牲原始图像的质量。IHNN的灵活性在于,它可以被级联多次,以适应不同数量的秘密图像隐藏需求。
为了提高隐藏的不可见性,DeepMIH引入了重要度图(IM)模块。这个模块根据先前图像的隐藏结果来指导当前图像的隐藏,确保秘密信息的嵌入尽可能不引起视觉察觉。通过对图像的重要部分进行智能选择,可以有效地减少隐藏操作对封面图像的影响。
此外,研究发现,将图像隐藏在高频子带中可以实现更好的隐藏效果。因此,DeepMIH提出了低频小波损失,以限制秘密信息在低频子带中的存在,进一步提升隐藏的安全性。通过这种方式,可以确保秘密信息更安全地隐藏在难以察觉的高频部分,减少对低频成分的干扰,从而保持封面图像的视觉质量。
实验结果显示,DeepMIH在多种数据集上表现出卓越的性能,无论是在隐藏的不可见性、安全性还是恢复准确性方面,都明显优于其他现有的先进方法。这些成果对于改进图像隐藏技术,尤其是多图像隐藏的效率和安全性具有重要意义,为秘密通信和信息安全提供了更强大的工具。
DeepMIH通过深度可逆网络和创新的策略,成功解决了多图像隐藏中的难题,提高了隐藏质量和恢复准确率。这一工作不仅展示了深度学习在图像隐藏领域的潜力,也为未来的研究开辟了新的路径,如如何进一步优化可逆神经网络的设计,或者探索更复杂的隐藏策略以适应不同的应用场景。