基于长短期记忆网络(LSTM)的时间序列预测 要求2018b及以上版本,matlab代码 评价指标包括:R2、MAE、MSE

上传者: 43916303 | 上传时间: 2025-09-28 15:57:27 | 文件大小: 25KB | 文件类型: ZIP
时间序列预测是数据分析领域的重要部分,它涉及到对历史数据序列的建模,以预测未来的趋势。长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),在处理时间序列问题,尤其是序列中的长期依赖性时表现优异。本项目利用LSTM进行时间序列预测,并以MATLAB为开发环境,要求MATLAB版本为2018b或以上。 MATLAB是一种广泛使用的编程语言和计算环境,尤其在数学、科学和工程领域中。在LSTM的时间序列预测中,MATLAB提供了丰富的工具箱和函数支持,使得模型构建、训练和验证过程更为便捷。项目包含以下主要文件: 1. `main.m`:这是主程序文件,负责调用其他辅助函数,设置参数,加载数据,训练模型,以及进行预测和性能评估。 2. `fical.m`:可能是一个自定义的损失函数或者模型评估函数,用于在训练过程中度量模型的预测效果。 3. `initialization.m`:可能包含了模型参数的初始化逻辑,如权重和偏置的随机赋值,这在训练LSTM模型时至关重要。 4. `data_process.m`:这个文件处理原始数据,将其转化为适合输入到LSTM模型的形式。可能包括数据清洗、归一化、分序列等步骤。 5. `windspeed.xls`:这是一个包含风速数据的Excel文件,可能是用于预测的时间序列数据源。时间序列数据可以是各种形式,如股票价格、气温、电力消耗等。 在模型的评估中,使用了多个指标: - **R²(决定系数)**:R²值越接近1,表示模型拟合数据的程度越高;越接近0,表示模型解释数据的能力越弱。 - **MAE(平均绝对误差)**:衡量模型预测值与真实值之间的平均偏差,单位与目标变量相同,越小说明模型精度越高。 - **MSE(均方误差)**:是MAE的平方,更敏感于大误差,同样反映了模型的预测精度。 - **RMSE(均方根误差)**:MSE的平方根,与MSE类似,但其单位与目标变量一致。 - **MAPE(平均绝对百分比误差)**:以百分比形式衡量误差,不受目标变量尺度影响,但不适用于目标变量为零或负的情况。 通过这些评价指标,我们可以全面了解模型的预测性能。在实际应用中,可能需要根据具体业务需求调整模型参数,优化模型结构,以达到最佳预测效果。此外,对于时间序列预测,还可以考虑结合其他技术,如自回归模型(AR)、滑动窗口预测、集成学习等,以进一步提升预测准确性和稳定性。

文件下载

资源详情

[{"title":"( 5 个子文件 25KB ) 基于长短期记忆网络(LSTM)的时间序列预测 要求2018b及以上版本,matlab代码 \n\n评价指标包括:R2、MAE、MSE","children":[{"title":"fical.m <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"initialization.m <span style='color:#111;'> 427B </span>","children":null,"spread":false},{"title":"windspeed.xls <span style='color:#111;'> 76.00KB </span>","children":null,"spread":false},{"title":"main.m <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"data_process.m <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明