CoordAtt注意力机制集成的U-Net模型用于图像分割任务

上传者: 44886601 | 上传时间: 2025-04-21 13:48:25 | 文件大小: 4KB | 文件类型: TXT
内容概要:本文展示了基于 PyTorch 实现的一个深度学习网络,即集成了坐标注意力(CoordAtt)模块的 U-Net 网络,主要用于医疗影像或者卫星图片等高分辨率图像的分割任务中。文中定义了两种关键组件:CoordAtt 和 UNetWithCoordAtt。CoordAtt 是为了在水平和垂直维度引入空间注意力机制来增强特征提取能力而提出的一种改进方法。具体做法是通过对不同方向进行池化操作并用1x1卷积核调整通道数目与生成最终的注意权值。UNet部分则继承了传统的U形结构思想,在编码和解码过程中不断下采样获得抽象特征以及通过上采样的方式复原到原始尺寸;在每一次编码后的处理步骤和部分解码环节加入 CoordAtt,从而提高了网络捕捉长程依存关系的能力。最后还附有一个简单的测试函数来实例化对象并验证输出正确性。 适用人群:适用于有一定 PyTorch 使用经验的研究者或从业者,对于从事图像处理特别是需要做精确边界定位的应用领域的工作人员来说非常有价值。 使用场景及目标:该架构非常适合于对精度有较高要求但数据样本相对匮乏的情境之下。其目的是解决医学扫描、自动驾驶、遥感图像等领域面临的复杂背景噪声问题,在保证速度的同时提供更为精准的对象分割。 其他说明:本文提供了详细的源代码和注释,有助于深入理解 U-Net 系列变体以及注意力机制的设计思路。同时由于采用模块化的搭建方式也很容易进行参数调优以适配不同的业务需求。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明