MADRL基于MADRL的单调价值函数分解(QMIX)算法

上传者: 51399582 | 上传时间: 2025-07-15 20:18:31 | 文件大小: 112KB | 文件类型: ZIP
基于MADRL的单调价值函数分解(Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning)QMIX 是一种用于多智能体强化学习的算法,特别适用于需要协作的多智能体环境,如分布式控制、团队作战等场景。QMIX 算法由 Rashid 等人在 2018 年提出,其核心思想是通过一种混合网络(Mixing Network)来对各个智能体的局部 Q 值进行非线性组合,从而得到全局 Q 值。 在多智能体强化学习中,每个智能体都需要基于自身的观测和经验来学习策略。在一个协作环境中,多个智能体的决策往往相互影响,因此仅考虑单个智能体的 Q 值并不足够。直接对整个系统的 Q 值进行建模在计算上是不可行的,因为状态和动作空间会随着智能体数量呈指数增长。

文件下载

资源详情

[{"title":"( 24 个子文件 112KB ) MADRL基于MADRL的单调价值函数分解(QMIX)算法","children":[{"title":"QMIX","children":[{"title":"QMIX_SMAC_main.py <span style='color:#111;'> 9.61KB </span>","children":null,"spread":false},{"title":"qmix_smac.py <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"QMIX_SMAC_training_result.png <span style='color:#111;'> 84.60KB </span>","children":null,"spread":false},{"title":"runs","children":[{"title":"readme.txt <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":true},{"title":"normalization.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"replay_buffer.py <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"3.QMIX_VDN_SMAC.iml <span style='color:#111;'> 321B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 185B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 621B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 289B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 190B </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"readme.txt <span style='color:#111;'> 49B </span>","children":null,"spread":false}],"spread":true},{"title":"mix_net.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"mappo.cpython-37.pyc <span style='color:#111;'> 9.08KB </span>","children":null,"spread":false},{"title":"mappo_2.cpython-37.pyc <span style='color:#111;'> 9.33KB </span>","children":null,"spread":false},{"title":"mappo_copy.cpython-37.pyc <span style='color:#111;'> 8.24KB </span>","children":null,"spread":false},{"title":"normalization.cpython-37.pyc <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"running_mean_var.cpython-37.pyc <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"replay_buffer_2.cpython-37.pyc <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"replay_buffer.cpython-37.pyc <span style='color:#111;'> 1.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"data_train","children":[{"title":"readme.txt <span style='color:#111;'> 54B </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明