Python编写由yolov5算法和deepssort算法实现的人流量计数

上传者: 56772531 | 上传时间: 2025-05-04 21:25:33 | 文件大小: 101.65MB | 文件类型: 7Z
在本文中,我们将深入探讨如何使用Python编程语言结合YOLOv5和DeepSORT算法来实现一个高效、准确的人流量计数系统。这个系统在Windows 10操作系统上得到了成功的运行,并且包含了用户界面的注册登录设计,使得系统更加人性化和易用。 YOLOv5是一种基于深度学习的目标检测模型,全称为"You Only Look Once",它的主要任务是识别图像中的各个对象并将其框出。YOLOv5以其快速的检测速度和较高的准确性而备受推崇,尤其适合实时应用,如监控视频中的人流量计数。在本项目中,YOLOv5被用来检测视频帧中的人体目标。 DeepSORT则是一个跟踪算法,它结合了卡尔曼滤波器(Kalman Filter)和匈牙利算法(Hungarian Algorithm)来解决目标跟踪问题。DeepSORT利用了神经网络提取的特征,使得即使在目标暂时遮挡或离开视线后,也能重新识别并恢复跟踪。在人流量计数场景中,DeepSORT确保了个体在视频中的连续性,避免了因人移动和重叠导致的计数错误。 为了实现这个系统,首先你需要安装所有必要的依赖库。在`requirement.txt`文件中列出的应该包括但不限于`torch`(用于运行YOLOv5模型)、`opencv-python`(处理视频和图像)、`numpy`(数值计算)、`matplotlib`(可视化)以及可能的UI框架,如`tkinter`或`PyQt`。确保按照文件指示正确安装这些库,因为它们是程序运行的关键。 在代码中,关键部分包括: 1. **预处理**:加载YOLOv5模型,并对输入视频进行预处理,例如调整大小、归一化等,以适应模型的输入要求。 2. **目标检测**:使用YOLOv5模型对每一帧进行处理,获取到边界框信息,即每个人的位置和大小。 3. **特征提取**:对于每一个检测到的目标,使用DeepSORT算法提取特征,这通常涉及到模型的中间层输出。 4. **目标跟踪**:基于特征相似度,DeepSORT算法将新检测到的目标与之前帧中的目标匹配,形成连续的轨迹。 5. **计数逻辑**:通过跟踪的结果,我们可以计算进入和离开视野的人数,从而得到每帧的人流量。 6. **界面设计**:创建一个用户界面,包含登录注册功能,展示视频流和实时计数结果。用户可以登录系统,查看历史数据或导出统计报告。 此外,考虑到Windows 10环境,你可能还需要处理跨平台兼容性问题,确保所有的库和依赖项都能在该操作系统上正常工作。在实际部署时,可能需要优化性能,比如利用多线程或者GPU加速。 这个项目结合了先进的目标检测和跟踪技术,为实时人流量计数提供了一种有效的解决方案。通过理解YOLOv5和DeepSORT的工作原理,以及如何将它们集成到Python环境中,你可以开发出自己的智能监控系统,应用于各种场景,如商场、车站等公共场所的安全管理和人流分析。

文件下载

资源详情

[{"title":"( 174 个子文件 101.65MB ) Python编写由yolov5算法和deepssort算法实现的人流量计数","children":[{"title":"19359a61ae2446b51b549167b014da2fcf265768 <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"71194a373e6bf82e2b55c35a8c71e36941f121c6 <span style='color:#111;'> 754B </span>","children":null,"spread":false},{"title":"8826bf7a3bed69cb752b845c063808a9e3c98268 <span style='color:#111;'> 518B </span>","children":null,"spread":false},{"title":"8ec9a00bfd09b3190ac6b22251dbb1aa95a0579d <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"a36e355ddb203d7d4133221f339dc406cb9f480f <span style='color:#111;'> 761B </span>","children":null,"spread":false},{"title":"a7bb452cfcc55381109505fffa5b102287016fb2 <span style='color:#111;'> 54B </span>","children":null,"spread":false},{"title":"aabfcb2eb879bed80642bfa16ef73a1d237b5776 <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"ab8e703aeb8d1df93733c4a12c9415de9a7c130c <span style='color:#111;'> 681B </span>","children":null,"spread":false},{"title":"b29a38c1917564e11e7395c6e54612264db80002 <span style='color:#111;'> 442B </span>","children":null,"spread":false},{"title":"b50ab6c87a7c4e9f05d4a01435a586ecc199eae4 <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"userInfo.csv <span style='color:#111;'> 41B </span>","children":null,"spread":false},{"title":"daae6d99d8cb8d282c9b948f3cb1d7f946778873 <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"db18bef8cfa997bcb7b319fe5cf933515d5ef9ff <span style='color:#111;'> 911B </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"f1bdda93d9a278e358509d498e17d97764c1fb29 <span style='color:#111;'> 958B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.76KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":".gitkeep <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"yolov5_deepsort_FINAL.iml <span style='color:#111;'> 507B </span>","children":null,"spread":false},{"title":"train.jpg <span style='color:#111;'> 58.93KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.57KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 65B </span>","children":null,"spread":false},{"title":"market.mp4 <span style='color:#111;'> 25.18MB </span>","children":null,"spread":false},{"title":".name <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"index.pb <span style='color:#111;'> 812B </span>","children":null,"spread":false},{"title":"2.png <span style='color:#111;'> 214.83KB </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 171.00KB </span>","children":null,"spread":false},{"title":"yolov5s6.pt <span style='color:#111;'> 24.57MB </span>","children":null,"spread":false},{"title":"yolov5s.pt <span style='color:#111;'> 14.48MB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 44.84KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 35.63KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 32.44KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 26.51KB </span>","children":null,"spread":false},{"title":"tf.py <span style='color:#111;'> 20.17KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 20.04KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 14.61KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 13.73KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 13.53KB </span>","children":null,"spread":false},{"title":"json_logger.py <span style='color:#111;'> 11.49KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 11.46KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 9.39KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 8.36KB </span>","children":null,"spread":false},{"title":"linear_assignment.py <span style='color:#111;'> 7.71KB </span>","children":null,"spread":false},{"title":"kalman_filter.py <span style='color:#111;'> 7.60KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 7.45KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 7.15KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 6.14KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"nn_matching.py <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"tracker.py <span style='color:#111;'> 5.17KB </span>","children":null,"spread":false},{"title":"track.py <span style='color:#111;'> 4.86KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 4.48KB </span>","children":null,"spread":false},{"title":"io.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"tracker.py <span style='color:#111;'> 4.20KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 4.04KB </span>","children":null,"spread":false},{"title":"Login.py <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false},{"title":"deep_sort.py <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"benchmarks.py <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"registe_ui.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"evaluation.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"original_model.py <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"iou_matching.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"login_ui.py <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"warn_ui.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"detector.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"preprocessing.py <span style='color:#111;'> 1.87KB </span>","children":null,"spread":false},{"title":"feature_extractor.py <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"detection.py <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"sweep.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"draw.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"restapi.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"log_dataset.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"parser.py <span style='color:#111;'> 984B </span>","children":null,"spread":false},{"title":"id_utils.py <span style='color:#111;'> 809B </span>","children":null,"spread":false},{"title":"tools.py <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":"log.py <span style='color:#111;'> 463B </span>","children":null,"spread":false},{"title":"asserts.py <span style='color:#111;'> 316B </span>","children":null,"spread":false},{"title":"example_request.py <span style='color:#111;'> 299B </span>","children":null,"spread":false},{"title":"evaluate.py <span style='color:#111;'> 293B </span>","children":null,"spread":false},{"title":"share.py <span style='color:#111;'> 244B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"datasets.cpython-39.pyc <span style='color:#111;'> 35.07KB </span>","children":null,"spread":false},{"title":"general.cpython-39.pyc <span style='color:#111;'> 30.71KB </span>","children":null,"spread":false},{"title":"common.cpython-39.pyc <span style='color:#111;'> 29.42KB </span>","children":null,"spread":false},{"title":"plots.cpython-39.pyc <span style='color:#111;'> 17.91KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明