计算机常用数值计算算法与程序 C++版

上传者: ucliaohh | 上传时间: 2026-01-06 17:09:46 | 文件大小: 41.7MB | 文件类型: ZIP
《计算机常用数值计算算法与程序 C++版》是由何渝编写的,这是一本深入探讨数值计算算法在C++编程语言中的实现的书籍。数值计算是计算机科学中的一个重要分支,它涉及数学、物理学、工程学等多个领域,是解决实际问题的基础工具。C++作为一种强大且高效的编程语言,被广泛用于实现复杂的数值计算算法。 该资源包含了一系列的C++源码,这些源码实现了各种常用的数值计算方法,为学习者提供了实践操作的机会。以下是一些可能涵盖的算法和概念: 1. **线性代数**:包括矩阵运算(如矩阵加减、乘法、求逆、特征值和特征向量)、解线性方程组(高斯消元法、LU分解、QR分解等)以及奇异值分解(SVD)。 2. **数值微积分**:涉及到函数的数值积分,如梯形法则、辛普森法则、高斯积分等,这些都是解决连续函数积分的有效手段。 3. **数值微分**:用于估计导数,包括有限差分法(前向、后向和中心差分)、牛顿-柯特斯公式等。 4. **插值与拟合**:包括拉格朗日插值、牛顿插值、样条插值等方法,用于构建近似函数来逼近数据点。 5. **数值优化**:如梯度下降法、牛顿法、拟牛顿法、遗传算法等,用于寻找函数的极值点。 6. **常微分方程**:包括欧拉方法、龙格-库塔方法等,用于数值求解初值问题。 7. **偏微分方程**:如有限差分法、有限元方法,用于数值求解偏微分方程。 8. **概率统计**:如蒙特卡洛模拟、随机数生成、统计假设检验等,用于处理随机现象的数值模拟。 9. **数值线性代数**:如迭代法求解大型稀疏矩阵问题,如雅可比迭代、高斯-塞德尔迭代等。 通过阅读和实践这些C++源代码,学习者可以加深对数值计算算法的理解,提升编程能力,同时也能为解决实际问题提供有力的工具。无论是科研工作还是工程应用,掌握这些算法都是必不可少的技能。对于想要深入学习数值计算的C++程序员来说,这本书和其配套源码是一份宝贵的资源。

文件下载

资源详情

[{"title":"( 630 个子文件 41.7MB ) 计算机常用数值计算算法与程序 C++版","children":[{"title":"MatrixExample.cpp <span style='color:#111;'> 3.76KB </span>","children":null,"spread":false},{"title":"StepwiseRegression.cpp <span style='color:#111;'> 2.75KB </span>","children":null,"spread":false},{"title":"PolyValueTwoDim.cpp <span style='color:#111;'> 2.66KB </span>","children":null,"spread":false},{"title":"ComplexExample.cpp <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"MatrixInversionGS.cpp <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"PolyValueOneDim.cpp <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"SievingKalman.cpp <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"Comm.cpp <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"LE_TotalChoiceGaussJordan.cpp <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"ExtremumBrentNonDerivative1D.CPP <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"MatrixSymmetryRegular.cpp <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"ExtremumGold1D.CPP <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"MatrixLU.cpp <span style='color:#111;'> 1.74KB </span>","children":null,"spread":false},{"title":"PolyMultip.cpp <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"PolyDiv.cpp <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"LE_TotalChoiceGauss.cpp <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"ODE_Gear.cpp <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"MatrixSymmetryRegularCholesky.cpp <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"FourierTransform.cpp <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"MatrixSingularValue.cpp <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"Interpolation3Spooling1stBoundary.cpp <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"Interpolation3Spooling2ndBoundary.cpp <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"StatRandomSample.cpp <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"RootGradient.cpp <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"ExtremumComplexND.cpp <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"RootMonteCarloComplex.cpp <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"RootLeastSquareGeneralizedInverse2.cpp <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"Interpolation3Spooling3thBoundary.cpp <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"PolyValueOneDimGroup.cpp <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"MatrixSymmetryRegularInversion.cpp <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"RootLeastSquareGeneralizedInverse1.cpp <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"SievingABR.cpp <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"MatrixRank.cpp <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"MatrixToeplitzInversionTrench.cpp <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"RootNewtonHillDown.cpp <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"HouseholderTransform.cpp <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"LinearRegressionND.cpp <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"EigenvalueVectorRealTriangleQR.cpp <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"MatrixSymmetry.cpp <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"ODE_GillVariationalStep.cpp <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"ODE_Treanor.cpp <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"InterpolationSmoothNotIsometry.cpp <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false},{"title":"LE_StrapEquationGauss.cpp <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"MatrixDeterminant.cpp <span style='color:#111;'> 1015B </span>","children":null,"spread":false},{"title":"LE_SparseEuationTotalChoiceGaussJordan.cpp <span style='color:#111;'> 1002B </span>","children":null,"spread":false},{"title":"IntegralGaussMD.cpp <span style='color:#111;'> 998B </span>","children":null,"spread":false},{"title":"LE_LinearLeastSquareGeneralizedInverse.cpp <span style='color:#111;'> 989B </span>","children":null,"spread":false},{"title":"EigenvalueVectorHessenbergQR.cpp <span style='color:#111;'> 989B </span>","children":null,"spread":false},{"title":"ODE_TreanorInterval.cpp <span style='color:#111;'> 986B </span>","children":null,"spread":false},{"title":"ODE_MersonVariationalStep.cpp <span style='color:#111;'> 946B </span>","children":null,"spread":false},{"title":"ODE_GillVariationalStepInterval.cpp <span style='color:#111;'> 945B </span>","children":null,"spread":false},{"title":"RootQuasiNewton.cpp <span style='color:#111;'> 943B </span>","children":null,"spread":false},{"title":"RootHalves.cpp <span style='color:#111;'> 934B </span>","children":null,"spread":false},{"title":"ODE_AdamsInterval.cpp <span style='color:#111;'> 932B </span>","children":null,"spread":false},{"title":"EigenvalueVectorRealSymmetryJacobi.cpp <span style='color:#111;'> 930B </span>","children":null,"spread":false},{"title":"ODE_RungeKuttaContentStep.cpp <span style='color:#111;'> 928B </span>","children":null,"spread":false},{"title":"HalfLogarithmCorrelation.cpp <span style='color:#111;'> 928B </span>","children":null,"spread":false},{"title":"LinearRegression1D.cpp <span style='color:#111;'> 926B </span>","children":null,"spread":false},{"title":"LE_SymmetryRegularEuationSquareRoot.cpp <span style='color:#111;'> 925B </span>","children":null,"spread":false},{"title":"EigenvalueVectorRealSymmetryJacobiB.cpp <span style='color:#111;'> 923B </span>","children":null,"spread":false},{"title":"ODE_HammingInterval.cpp <span style='color:#111;'> 922B </span>","children":null,"spread":false},{"title":"LE_SymmetryEquation.cpp <span style='color:#111;'> 920B </span>","children":null,"spread":false},{"title":"ExtremumFractionND.cpp <span style='color:#111;'> 918B </span>","children":null,"spread":false},{"title":"ODE_RungeKuttaVariationalStep.cpp <span style='color:#111;'> 913B </span>","children":null,"spread":false},{"title":"ODE_BothSidesInterval.cpp <span style='color:#111;'> 907B </span>","children":null,"spread":false},{"title":"ExtremumSimplexND.cpp <span style='color:#111;'> 906B </span>","children":null,"spread":false},{"title":"ODE_WittyContentStep.cpp <span style='color:#111;'> 906B </span>","children":null,"spread":false},{"title":"ODE_FractionInterval.cpp <span style='color:#111;'> 901B </span>","children":null,"spread":false},{"title":"ODE_EulerVariationalStep.cpp <span style='color:#111;'> 901B </span>","children":null,"spread":false},{"title":"InterpolationSmoothIsometry.cpp <span style='color:#111;'> 889B </span>","children":null,"spread":false},{"title":"GeneralizedInversionSingularValue.cpp <span style='color:#111;'> 873B </span>","children":null,"spread":false},{"title":"ODE_Fraction.cpp <span style='color:#111;'> 872B </span>","children":null,"spread":false},{"title":"RootMonteCarloGroupReal.cpp <span style='color:#111;'> 863B </span>","children":null,"spread":false},{"title":"Interpolation1Variable3PointsIsometry.cpp <span style='color:#111;'> 845B </span>","children":null,"spread":false},{"title":"LE_LinearLeastSquareHouseholder.cpp <span style='color:#111;'> 836B </span>","children":null,"spread":false},{"title":"RootNewton.cpp <span style='color:#111;'> 828B </span>","children":null,"spread":false},{"title":"InterpolationFractionNotIsometry.cpp <span style='color:#111;'> 826B </span>","children":null,"spread":false},{"title":"LogarithmCorrelation.cpp <span style='color:#111;'> 823B </span>","children":null,"spread":false},{"title":"Interpolation2VariableWholeInterval.cpp <span style='color:#111;'> 817B </span>","children":null,"spread":false},{"title":"MatrixQR.cpp <span style='color:#111;'> 811B </span>","children":null,"spread":false},{"title":"ODE_EulerContentStep.cpp <span style='color:#111;'> 808B </span>","children":null,"spread":false},{"title":"Interpolation2Variable3Points.cpp <span style='color:#111;'> 806B </span>","children":null,"spread":false},{"title":"InterpolationAitkenNotIsometry.cpp <span style='color:#111;'> 804B </span>","children":null,"spread":false},{"title":"FitSurfaceLeastSquares.cpp <span style='color:#111;'> 797B </span>","children":null,"spread":false},{"title":"Interpolation1VariableIsometry.cpp <span style='color:#111;'> 794B </span>","children":null,"spread":false},{"title":"HessenbergTransform.cpp <span style='color:#111;'> 792B </span>","children":null,"spread":false},{"title":"MatrixTranspose.cpp <span style='color:#111;'> 786B </span>","children":null,"spread":false},{"title":"ODE_LinearBoundaryValude.cpp <span style='color:#111;'> 778B </span>","children":null,"spread":false},{"title":"LE_IllConditionedEquation.cpp <span style='color:#111;'> 773B </span>","children":null,"spread":false},{"title":"LE_GaussSeidelIteration.cpp <span style='color:#111;'> 770B </span>","children":null,"spread":false},{"title":"InterpolationHermiteNotIsometry.cpp <span style='color:#111;'> 753B </span>","children":null,"spread":false},{"title":"Interpolation1Variable3PointsNotIsometry.cpp <span style='color:#111;'> 735B </span>","children":null,"spread":false},{"title":"LE_SymmetryRegularEuationConjugateGradient.cpp <span style='color:#111;'> 733B </span>","children":null,"spread":false},{"title":"IntegralSimpson2D.cpp <span style='color:#111;'> 729B </span>","children":null,"spread":false},{"title":"RootFraction.cpp <span style='color:#111;'> 719B </span>","children":null,"spread":false},{"title":"RootAitken.cpp <span style='color:#111;'> 714B </span>","children":null,"spread":false},{"title":"IntegralFraction2D.cpp <span style='color:#111;'> 710B </span>","children":null,"spread":false},{"title":"InterpolationAitkenIsometry.cpp <span style='color:#111;'> 704B </span>","children":null,"spread":false},{"title":"ExtremumFraction1D.cpp <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"FourierSeriesApproach.cpp <span style='color:#111;'> 686B </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明