上传者: 35742852
|
上传时间: 2025-10-14 22:40:38
|
文件大小: 10.69MB
|
文件类型: PDF
【Python机器学习基础教程1】是一本面向初学者的指南,旨在帮助读者理解并掌握机器学习的基本概念和Python实现。本书特别强调了Python语言在机器学习领域的应用,选择了流行的scikit-learn库作为主要工具。
在机器学习领域,本书首先介绍了为何选择机器学习。机器学习是一种数据分析方法,它允许计算机在没有明确编程的情况下学习。通过识别数据中的模式,机器学习能解决复杂问题,如医疗诊断和社交网络分析。Python作为开源且易学的编程语言,提供了丰富的库和工具,使得个人也能轻松进行机器学习实践。
书中详细讲解了如何安装和使用scikit-learn,这是一个强大的机器学习库,包含多种监督和无监督学习算法。此外,还介绍了其他关键的Python库,如Jupyter Notebook用于交互式编程,NumPy和SciPy提供数值计算功能,matplotlib和pandas则用于数据可视化和数据处理。
书中详细阐述了监督学习,包括分类和回归问题,以及模型的泛化能力、过拟合和欠拟合。讨论了各种算法,如k近邻、线性模型、朴素贝叶斯、决策树、支持向量机和神经网络。还提到了如何评估模型的不确定度,如预测概率和决策函数。
无监督学习部分涉及聚类和降维技术,如k均值、凝聚聚类、DBSCAN、主成分分析(PCA)、非负矩阵分解和t-SNE。无监督学习的挑战在于没有明确的目标,因此评估和理解结果更为复杂。
数据表示和特征工程章节讨论了如何有效地编码分类变量,如何处理连续和离散特征,以及如何通过交互特征和非线性变换提高模型性能。自动化特征选择的方法,如单变量统计、基于模型的选择和迭代选择,也有所介绍。
模型评估与改进是关键,书中讲解了交叉验证、网格搜索和各种评估指标,如准确率、F1分数、AUC-ROC曲线和R²分数,以帮助优化模型性能。
算法链和管道章节介绍了如何构建和使用管道来简化预处理和模型选择的过程,特别强调了在网格搜索中使用管道的效率。
文本数据处理部分探讨了处理自然语言数据的方法,如词袋模型、TF-IDF、停用词、n元分词、词干提取和词形还原,以及主题建模和文档聚类。
全书总结了从项目构思到生产环境部署的整个过程,强调了在实际问题中考虑业务需求、测试和监控的重要性,鼓励读者继续深入学习和探索机器学习的更多领域。
这本书为读者提供了一个全面的Python机器学习入门平台,涵盖了从数据预处理、模型选择、评估到实际应用的整个流程。通过阅读和实践,读者将具备基础的机器学习能力和解决实际问题的能力。