上传者: 38550834
|
上传时间: 2026-01-18 17:15:29
|
文件大小: 198KB
|
文件类型: PDF
在传统的控制系统中,通常将单片机作为控制核心并辅以相应的元器件构成一个整体。但这种方法硬件连线复杂、可靠性差,且在实际应用中往往需要外加扩展芯片,这无疑会增大控制系统的体积,还会增加引入干扰的可能性。对一些体积小的控制系统,要求以尽可能小的器件体积实现尽可能复杂的控制功能,直接应用单片机及其扩展芯片就难以达到所期望的效果。
【基于单片机和CPLD的数字频率计设计】
在传统的电子控制系统中,单片机经常被用作核心处理器,配合外部元器件构建整个系统。然而,这种设计方法存在硬件连线复杂、可靠性低的问题,因为往往需要额外的扩展芯片来增加功能,这不仅增大了系统的体积,还可能引入更多的干扰。对于体积要求紧凑的控制系统,单片机及其扩展芯片的直接应用难以满足小型化和复杂功能的需求。
复杂可编程逻辑器件(CPLD)的出现,以其高集成度、运算速度快速、开发周期短等优点,改变了数字电路设计的模式,增强了设计的灵活性。本文提出了一种结合Altera公司的CPLD (ATF1508AS) 和Atmel公司的单片机(AT89S52) 设计的数字频率计方案。这种设计能实现简洁的电路布局,充分利用软件潜力,提高低频段测量精度,并有效抑制干扰。
**CPLD开发环境**
1. **VHDL语言**:VHDL是一种超高速集成电路硬件描述语言,用于快速设计电路。它支持多层次描述,可以自顶向下地进行设计,无需深入了解硬件结构。通过VHDL,设计师可以先进行系统级别的行为描述,然后进行仿真和纠错,最终通过逻辑综合生成门级逻辑电路,用于CPLD的编程。
2. **Max+PlusⅡ开发工具**:这是Altera公司的CAE软件,提供全面的逻辑设计功能,允许混合文本、图形和波形输入。设计者可以使用高级行为语言、原理图或波形图进行设计,Max+PlusⅡ会自动将其转换为目标结构的格式,简化设计流程。它支持多种CPLD系列,并提供了丰富的逻辑库和宏功能模块,减轻设计工作量。
**等精度测频原理**
本系统采用等精度测频原理进行频率测量。门控信号是一个预置宽度的脉冲Tpr。CNT1和CNT2是两个计数器,标准频率信号和被测信号分别输入。当门控信号高时,两个计数器同时启动,对两个信号计数。在门控时间Tpr内,CNT1计数标准信号Fs的次数为Ns,CNT2计数被测信号Fx的次数为Nx。根据Fx/Nx = Fs/Ns的等比例关系,可以计算出被测信号的频率Fx。
**系统硬件电路设计**
系统硬件主要由以下几个部分组成:
- **键盘控制模块**:通过74LS165读取按键输入,设置5个功能键和3个时间选择键。
- **显示模块**:使用8只74LS164进行LED串行显示测量结果。
- **输入信号整形模块**:对被测信号进行限幅、放大和整形,使其适应CPLD的输入要求。
- **单片机主控和CPLD模块**:单片机负责整体控制,包括键盘信号处理、CPLD测量控制和结果显示。CPLD执行测试功能,对标准频率和被测信号进行计数。
50MHz的有源晶振为CPLD提供时钟,确保测量精度。
基于单片机和CPLD的数字频率计设计,利用了CPLD的高度集成性和VHDL的灵活性,实现了高效、紧凑的频率测量系统,降低了硬件复杂性,提高了测量精度,同时也降低了系统受到干扰的可能性。