Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据示例

上传者: 38590685 | 上传时间: 2021-11-18 15:15:18 | 文件大小: 72KB | 文件类型: -
c gi gis
本文实例讲述了Python基于Logistic回归建模计算某银行在降低贷款拖欠率的数据。分享给大家供大家参考,具体如下: 一、Logistic回归模型:   二、Logistic回归建模步骤 1.根据分析目的设置指标变量(因变量和自变量),根据收集到的数据进行筛选 2.用ln(p/1-p)和自变量x1…xp列出线性回归方程,估计出模型中的回归系数 3.进行模型检验。模型有效性检验的函数有很多,比如正确率、混淆矩阵、ROC曲线、KS值 4.模型应用。 三、对某银行在降低贷款拖欠率的数据进行建模 源代码为: import pandas as pd filename=r'..\data\bank

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明