Spatial-Spectral Schroedinger Eigenmaps:基于图形的图像数据降维技术-matlab开发

上传者: 38653443 | 上传时间: 2022-05-07 16:40:39 | 文件大小: 6KB | 文件类型: ZIP
使用空间光谱薛定谔特征图 (SSSE) 算法对高光谱图像进行降维和分类,如论文中所述: 1) ND Cahill、W. Czaja 和 DW Messinger,“具有非对角线潜力的高光谱图像空间光谱聚类的薛定谔特征图”,Proc。 SPIE 防御与安全:多光谱、高光谱和超光谱图像的算法和技术 XX,2014 年 5 月。 2) ND Cahill、W. Czaja 和 DW Messinger,提交了“用于高光谱图像的降维和分类的空间光谱薛定谔特征图”。 此示例脚本还使用支持向量机执行分类,如论文 2 中所述。

文件下载

资源详情

[{"title":"( 1 个子文件 6KB ) Spatial-Spectral Schroedinger Eigenmaps:基于图形的图像数据降维技术-matlab开发","children":[{"title":"SSSE.zip <span style='color:#111;'> 5.75KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明