matlabconv2代码-Deep-Semantic-Space-NST:深度语义空间引导的多尺度神经风格迁移

上传者: 38656676 | 上传时间: 2025-10-23 23:48:06 | 文件大小: 399.51MB | 文件类型: ZIP
在本项目中,"matlabconv2代码-Deep-Semantic-Space-NST:深度语义空间引导的多尺度神经风格迁移" 提供了一个利用MATLAB实现的深度语义空间引导的多尺度神经风格迁移算法。这个算法是计算机视觉和图像处理领域的一种创新应用,特别是在图像风格转移技术上。下面我们将详细探讨相关的知识点。 1. **神经风格迁移(Neural Style Transfer, NST)**: NST是一种基于深度学习的技术,用于将一幅图像的风格(例如梵高的画风)转移到另一幅图像的内容上。它通过学习和利用卷积神经网络(CNN)的中间层特征来实现风格和内容的分离与匹配。 2. **深度语义空间**: 深度语义空间是指由深度学习模型(如CNN)学到的高层特征空间,这些特征能够捕获图像的抽象语义信息。在这个空间中,相似的语义内容会有相近的表示,而不同的风格则体现在不同的特征层。 3. **多尺度**: 在多尺度神经风格迁移中,算法不仅在单一尺度上进行风格迁移,而是同时考虑不同分辨率的图像特征,以更全面地捕捉图像的风格信息,并提高转移效果的细节保真度。 4. **MATLAB和conv2函数**: MATLAB是一种广泛使用的编程环境,尤其在科学计算和工程应用中。在这个项目中,`conv2`函数用于执行二维卷积操作,这是CNN的核心运算之一。通过卷积,可以提取图像的特征,进而进行风格和内容的分析。 5. **开源系统**: 项目的标签为"系统开源",意味着源代码是公开的,允许用户查看、学习和修改。这鼓励了社区参与,促进了技术的共享和进步。 6. **Deep-Semantic-Space-NST-master文件夹**: 这个文件夹很可能是项目的主要源代码仓库,包含MATLAB代码和其他相关资源。用户可以通过下载并解压这个压缩包,然后在MATLAB环境中运行代码来实现深度语义空间引导的多尺度神经风格迁移。 7. **项目实施步骤**: - **预处理**:输入图像需要被预处理,包括大小调整、格式转换等,以便于后续计算。 - **模型构建**:构建一个预训练的CNN模型,如VGG19,用于提取图像的风格和内容特征。 - **特征提取**:使用`conv2`函数以及CNN模型的特定层来提取输入图像的内容和风格特征。 - **损失函数定义**:定义内容损失和风格损失,以衡量风格转移的质量。 - **优化过程**:通过反向传播和优化算法(如梯度下降)迭代更新输入图像的像素,使其逐步接近目标风格,同时保持内容信息。 - **结果输出**:生成风格转移后的图像,并可进一步进行后处理以优化视觉效果。 以上就是关于这个MATLAB项目的关键知识点,理解这些概念有助于你理解和实现自己的神经风格迁移算法。开源代码的可用性使得研究者和开发者可以直接参与到这种先进技术的研究与实践中,推动图像处理技术的不断创新和发展。

文件下载

资源详情

[{"title":"( 2000 个子文件 399.51MB ) matlabconv2代码-Deep-Semantic-Space-NST:深度语义空间引导的多尺度神经风格迁移","children":[{"title":"scan_perform.c <span style='color:#111;'> 658.45KB </span>","children":null,"spread":false},{"title":"lazylinker_c.c <span style='color:#111;'> 36.04KB </span>","children":null,"spread":false},{"title":"fortranobject.c <span style='color:#111;'> 34.97KB </span>","children":null,"spread":false},{"title":"corr_gemm.c <span style='color:#111;'> 33.28KB </span>","children":null,"spread":false},{"title":"corr3d_gemm.c <span style='color:#111;'> 32.92KB </span>","children":null,"spread":false},{"title":"corr_gemm.c <span style='color:#111;'> 25.96KB </span>","children":null,"spread":false},{"title":"contrast-retinex.c <span style='color:#111;'> 24.24KB </span>","children":null,"spread":false},{"title":"corr3d_gemm.c <span style='color:#111;'> 18.54KB </span>","children":null,"spread":false},{"title":"dnn_fwd.c <span style='color:#111;'> 16.70KB </span>","children":null,"spread":false},{"title":"alt_blas_template.c <span style='color:#111;'> 15.86KB </span>","children":null,"spread":false},{"title":"pool.c <span style='color:#111;'> 14.79KB </span>","children":null,"spread":false},{"title":"dnn_gi.c <span style='color:#111;'> 14.68KB </span>","children":null,"spread":false},{"title":"dnn_gw.c <span style='color:#111;'> 14.35KB </span>","children":null,"spread":false},{"title":"dnn_conv_base.c <span style='color:#111;'> 11.83KB </span>","children":null,"spread":false},{"title":"pool_ave_grad.c <span style='color:#111;'> 9.18KB </span>","children":null,"spread":false},{"title":"pool_max_rop.c <span style='color:#111;'> 9.10KB </span>","children":null,"spread":false},{"title":"wrapmodule.c <span style='color:#111;'> 8.59KB </span>","children":null,"spread":false},{"title":"pool_max_grad.c <span style='color:#111;'> 8.55KB </span>","children":null,"spread":false},{"title":"dnn_redux.c <span style='color:#111;'> 8.49KB </span>","children":null,"spread":false},{"title":"pool_grad_grad.c <span style='color:#111;'> 8.45KB </span>","children":null,"spread":false},{"title":"ctc_wrapper.c <span style='color:#111;'> 8.13KB </span>","children":null,"spread":false},{"title":"ctc_wrapper.c <span style='color:#111;'> 8.00KB </span>","children":null,"spread":false},{"title":"dnn_rnn_gi.c <span style='color:#111;'> 7.03KB </span>","children":null,"spread":false},{"title":"dnn_sptf_gi.c <span style='color:#111;'> 6.49KB </span>","children":null,"spread":false},{"title":"dnn_rnn_fwd.c <span style='color:#111;'> 6.12KB </span>","children":null,"spread":false},{"title":"dnn_pool_grad.c <span style='color:#111;'> 5.99KB </span>","children":null,"spread":false},{"title":"magma_svd.c <span style='color:#111;'> 5.26KB </span>","children":null,"spread":false},{"title":"dnn_sptf_sampler.c <span style='color:#111;'> 5.21KB </span>","children":null,"spread":false},{"title":"dnn_rnn_gw.c <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"blockgemv.c <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false},{"title":"magma_qr.c <span style='color:#111;'> 4.50KB </span>","children":null,"spread":false},{"title":"dnn_pool.c <span style='color:#111;'> 4.48KB </span>","children":null,"spread":false},{"title":"blockger.c <span style='color:#111;'> 4.26KB </span>","children":null,"spread":false},{"title":"dnn_sptf_grid.c <span style='color:#111;'> 4.23KB </span>","children":null,"spread":false},{"title":"magma_eigh.c <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"dnn_base.c <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"magma_cholesky.c <span style='color:#111;'> 3.73KB </span>","children":null,"spread":false},{"title":"dnn_batchnorm.c <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false},{"title":"dimshuffle.c <span style='color:#111;'> 3.53KB </span>","children":null,"spread":false},{"title":"dnn_softmax_grad.c <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"dnn_sptf_gt.c <span style='color:#111;'> 3.19KB </span>","children":null,"spread":false},{"title":"dnn_batchnorm_grad.c <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"dnn_softmax.c <span style='color:#111;'> 2.77KB </span>","children":null,"spread":false},{"title":"magma_inv.c <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"conv_desc.c <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"dimshuffle.c <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"test_quadratic_function.c <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"dnn_batchnorm_inf.c <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"dnn_dropout_fwd.c <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"dnn_rnn_paramsize.c <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"dnn_rnn_desc.c <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"tstgpueye.c <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"dnn_dropout_desc.c <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"dnn_batchnorm_base.c <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"testext.c <span style='color:#111;'> 673B </span>","children":null,"spread":false},{"title":"gfortran_vs2003_hack.c <span style='color:#111;'> 74B </span>","children":null,"spread":false},{"title":"plottable.css <span style='color:#111;'> 4.23KB </span>","children":null,"spread":false},{"title":"paper-dialog-common.css <span style='color:#111;'> 1.34KB </span>","children":null,"spread":false},{"title":"d3viz.css <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"global.css <span style='color:#111;'> 774B </span>","children":null,"spread":false},{"title":"demo.css <span style='color:#111;'> 702B </span>","children":null,"spread":false},{"title":"d3-context-menu.css <span style='color:#111;'> 448B </span>","children":null,"spread":false},{"title":"lapacke.h <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"lapacke.h <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"lapacke.h <span style='color:#111;'> 1.01MB </span>","children":null,"spread":false},{"title":"descriptor.pb.h <span style='color:#111;'> 326.53KB </span>","children":null,"spread":false},{"title":"descriptor.pb.h <span style='color:#111;'> 326.53KB </span>","children":null,"spread":false},{"title":"test_log.pb.h <span style='color:#111;'> 175.51KB </span>","children":null,"spread":false},{"title":"meta_graph.pb.h <span style='color:#111;'> 115.67KB </span>","children":null,"spread":false},{"title":"config.pb.h <span style='color:#111;'> 95.33KB </span>","children":null,"spread":false},{"title":"repeated_field.h <span style='color:#111;'> 85.80KB </span>","children":null,"spread":false},{"title":"repeated_field.h <span style='color:#111;'> 85.80KB </span>","children":null,"spread":false},{"title":"descriptor.h <span style='color:#111;'> 79.51KB </span>","children":null,"spread":false},{"title":"descriptor.h <span style='color:#111;'> 79.51KB </span>","children":null,"spread":false},{"title":"GeneralBlockPanelKernel.h <span style='color:#111;'> 79.18KB </span>","children":null,"spread":false},{"title":"GeneralBlockPanelKernel.h <span style='color:#111;'> 79.18KB </span>","children":null,"spread":false},{"title":"GeneralBlockPanelKernel.h <span style='color:#111;'> 79.18KB </span>","children":null,"spread":false},{"title":"op_def.pb.h <span style='color:#111;'> 78.33KB </span>","children":null,"spread":false},{"title":"summary.pb.h <span style='color:#111;'> 70.88KB </span>","children":null,"spread":false},{"title":"MatMatProductAVX2.h <span style='color:#111;'> 70.74KB </span>","children":null,"spread":false},{"title":"extension_set.h <span style='color:#111;'> 66.34KB </span>","children":null,"spread":false},{"title":"extension_set.h <span style='color:#111;'> 66.34KB </span>","children":null,"spread":false},{"title":"log_memory.pb.h <span style='color:#111;'> 66.24KB </span>","children":null,"spread":false},{"title":"event.pb.h <span style='color:#111;'> 65.95KB </span>","children":null,"spread":false},{"title":"type.pb.h <span style='color:#111;'> 63.92KB </span>","children":null,"spread":false},{"title":"type.pb.h <span style='color:#111;'> 63.92KB </span>","children":null,"spread":false},{"title":"ndarraytypes.h <span style='color:#111;'> 62.80KB </span>","children":null,"spread":false},{"title":"Eigen_Colamd.h <span style='color:#111;'> 60.81KB </span>","children":null,"spread":false},{"title":"Eigen_Colamd.h <span style='color:#111;'> 60.81KB </span>","children":null,"spread":false},{"title":"Eigen_Colamd.h <span style='color:#111;'> 60.81KB </span>","children":null,"spread":false},{"title":"TensorContractionCuda.h <span style='color:#111;'> 60.57KB </span>","children":null,"spread":false},{"title":"TensorContractionCuda.h <span style='color:#111;'> 60.57KB </span>","children":null,"spread":false},{"title":"TensorContractionCuda.h <span style='color:#111;'> 60.57KB </span>","children":null,"spread":false},{"title":"map.h <span style='color:#111;'> 59.91KB </span>","children":null,"spread":false},{"title":"map.h <span style='color:#111;'> 59.91KB </span>","children":null,"spread":false},{"title":"CoreEvaluators.h <span style='color:#111;'> 59.61KB </span>","children":null,"spread":false},{"title":"CoreEvaluators.h <span style='color:#111;'> 59.61KB </span>","children":null,"spread":false},{"title":"CoreEvaluators.h <span style='color:#111;'> 59.61KB </span>","children":null,"spread":false},{"title":"__multiarray_api.h <span style='color:#111;'> 59.60KB </span>","children":null,"spread":false},{"title":"Transform.h <span style='color:#111;'> 57.47KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明