上传者: 38678498
|
上传时间: 2026-02-20 16:52:07
|
文件大小: 691KB
|
文件类型: PDF
本研究针对三种非线性多元统计分析方法在智能舌(Smartongue)数据处理中的应用进行了比较研究。智能舌是一种基于非修饰惰性金属电极传感器阵列,结合多频大幅脉冲伏安法(MLAPV)的新型电子舌系统。本文所讨论的三种非线性多元数据处理方法包括核主成分分析(Kernel PCA)、局部线性嵌入(LLE)和Sammon映射。研究使用了普通主成分分析(PCA)作为参考方法,并利用鉴别指数(DI值)作为评价不同组分分离能力的定量指标。
在电子舌的背景知识中,电子舌是一种现代的定性和定量分析工具,它由交叉敏感的传感器阵列和适当模式识别技术组成。自20世纪80年代第一台电子舌发明以来,电子舌的研究发展迅速,涌现出了多种电子舌系统。例如,日本九州大学的Toko研究小组和俄罗斯圣彼得堡大学的Legin研究小组分别开发了一种潜在电子舌;瑞典林雪平大学的Winquist研究小组和西班牙的Martínez-Máñez研究小组各自提出了伏安法电子舌;Riul研究小组报道了一种基于阻抗谱的电子舌。
核主成分分析(Kernel PCA)是一种利用核技巧将原始数据映射到高维空间,在高维空间中使用线性PCA方法来实现非线性数据的降维和特征提取。这种方法特别适合于处理高维、非线性的数据集,并且已经被广泛应用于模式识别、信号处理和生物信息学等多个领域。
局部线性嵌入(LLE)是一种流形学习方法,旨在发现数据集中的内在几何结构,并将数据从高维空间映射到低维空间,同时保持数据在局部邻域内的线性关系。LLE通过优化保持数据局部邻域结构的嵌入坐标来实现,这种方法适用于揭示数据集中的非线性流形结构,常用于数据可视化和特征提取。
Sammon映射是一种用于多维尺度分析的非线性技术,它的目的是在低维空间中尽可能保持高维空间中样本点间的距离结构。Sammon映射通过最小化一种特定的误差函数来实现,该函数是高维和低维空间中距离差的函数。这种方法特别适用于数据可视化和对小数据集的分类问题,尤其是在数据的局部结构需要被保留时。
普通主成分分析(PCA)是统计学中常用的多变量分析方法,它可以将具有多个变量的数据集通过线性变换转换为一组线性无关的变量,这组变量被称为主成分。PCA通常用于数据降维、去噪和变量之间的相关性分析。在本研究中,PCA被用作比较非线性方法性能的参考标准。
鉴别指数(DI值)是一种评价方法,用于量化不同数据组分的分离能力。DI值越高,表示相应方法在区分不同组分方面表现得越好。在本研究中,DI值被用来评估三种非线性方法和普通PCA在智能舌数据处理中的性能。
总体而言,本研究指出非线性数据处理方法相比传统PCA在智能舌数据处理上具有更强的能力。在所比较的三种技术中,Sammon映射在智能舌数据中对三种苦味溶液、六种人工绿茶产品和五种不同储存时间的牛奶粉末溶液进行分类方面表现出色,并展示了从智能舌数据中提取有用信息的最佳数据处理能力。这项研究为智能舌技术提供了新的数据处理方法,并展示了其在食品科学领域应用的潜力。