上传者: 38698311
|
上传时间: 2026-01-18 23:53:11
|
文件大小: 558KB
|
文件类型: PDF
导读: 本文从仪器仪表应用领域对温控的需求方面出发,设计了具有高精度、低温漂的16位AD转换电路。模拟输入电压为0 - 100 mV,通过精准的放大和偏置后送给AD652进行V /F变换,转换出来的频率信号由CPLD进行测量,结果送交控制器,产生16位AD转换结果。
本文探讨了基于CPLD(复杂可编程逻辑器件)的高分辨率16位AD转换电路设计,该设计主要应用于仪器仪表领域的温控需求。在这一领域,高精度和低温漂移的AD转换电路至关重要,因为它直接影响到测量和控制的准确性。
在设计中,模拟输入电压范围为0 - 100 mV,首先通过精密放大和偏置电路,将输入信号调理到适合AD652 V/F转换器的范围。AD652是一款高性能的V/F转换芯片,它将电压信号转换为与其成正比的频率信号。转换后的频率信号由CPLD进行测量,CPLD作为一个高速计数器,能够精确地计算出频率,然后将结果传递给控制器,最终产生16位的AD转换结果。
系统架构包含三个主要部分:电压采样部分、模拟-数字转换部分和控制部分。电压采样部分使用精密基准源,例如AD586和OPA333,确保极高的精度和低温漂移。模拟-数字转换部分由电压放大及偏置电路(使用ICL7650运算放大器)、V/F转换模块(AD652)和计数转换模块(CPLD)组成。控制部分则采用单片机,如凌阳的SPEC061A,负责整个系统的协调和数据处理。
在硬件设计上,重点在于精密测试基准源和电压放大及偏置电路。基准源使用AD586和LM336,以保证稳定的电压参考,通过分压和电压跟随技术实现0 - 100 mV的精确电压输出。电压放大及偏置电路中,ICL7650运算放大器用于放大输入电压并进行偏置,以适应V/F转换器的要求。
V/F转换电路是AD转换的核心,AD652的输出频率与输入电压成比例,这种转换方式精度高、线性度好,适用于要求中等转换速度和高分辨率的应用。CPLD的使用提供了高计数频率,增强了系统的灵活性,避免了对特定器件的依赖,降低了系统风险。
本文详细介绍了一个基于CPLD的高分辨率AD转换电路的设计过程,涉及到精密电子器件的选择、信号调理、V/F转换以及CPLD的运用,这些知识点对于理解和设计类似高精度AD转换系统具有重要的指导意义。通过这样的设计,可以实现对微小电压变化的精确测量,满足仪器仪表领域对温控等高精度应用的需求。