上传者: 38703295
|
上传时间: 2025-04-16 23:22:00
|
文件大小: 268KB
|
文件类型: PDF
O 引言
波束控制系统的基本功能是给天线阵列中各个移相器提供所需要的控制信号。除此基本功能外,现代雷达还要求波束控制系统高速高效、低成本、小型化,并具有波束控制分系统的自检;根据工作频率,进行初相位在线补偿;天线相位码随机馈相等功能。同时,在设计生产过程中,为了配合其他系统的检测,还需要在雷达的不同工作模式下完善调试功能。另外,在雷达的长期使用过程中,要求单个组件维修时,波束控制组件驱动板能在脱机状态下正常工作。
这里展开介绍一种有源相控阵雷达波束控制系统的硬件平台及软件设计。
1 系统原理
为降低电路成本和增加系统可靠性,该系统采用设备量少、维修方便、可靠性高的集中式
本文主要探讨了一种基于FPGA(Field Programmable Gate Array)的雷达波束控制系统设计,该设计应用于EDA(Electronic Design Automation)/PLD(Programmable Logic Device)领域。波束控制系统是雷达系统的关键组成部分,其核心任务是为天线阵列中的移相器提供所需的控制信号,以实现精确的波束指向和扫描。
现代雷达对波束控制系统提出了更高的要求,包括高速高效、低成本、小型化,以及具备自我检测功能。系统需能根据工作频率进行初相位在线补偿,执行随机馈相策略,同时在不同工作模式下提供调试功能,确保单个组件维修时仍能正常运行。
该设计采用了集中式运算、分布式驱动的架构,运算板负责波束控制算法的计算和信号处理,而驱动板则完成译码和驱动任务。运算板利用FPGA实现快速的数据处理,以满足在500微秒内完成控制指令接收和波束控制码传输的需求。此外,运算板上的存储器允许实时更新补偿数据。系统采用自定义总线通信协议,以接收雷达控制指令并反馈阵面信息。
驱动板硬件设计中,单片机和EPLD(复杂可编程逻辑设备)共同实现驱动、译码、自检等功能,同时考虑到单独调试时的控制需求。为了降低成本,硬件设计尽可能简化,但仍能保证功能的完整性。
软件设计方面,重点在于FPGA程序的设计。阵面被分为四个子阵面,根据不同的工作模式(全孔径SAR模式和子孔径GMTI模式)进行波束控制。两片FPGA协同工作,通过四路差分串行码传输数据,其中包括两路数据码、一路地址码和一路时钟码。串口核、SRAM和FIFO分别用于调试、存储控制码和临时存储计算结果,确保了系统的灵活性和准确性。
本文介绍的基于FPGA的雷达波束控制系统设计充分利用了FPGA的并行处理能力,结合优化的硬件和软件架构,实现了现代雷达系统对波束控制的复杂需求,兼顾了性能、成本和可维护性。