matlab精度检验代码-ML_Heart_Disease_Project:ML_Heart_Disease_Project

上传者: 38705014 | 上传时间: 2022-04-23 18:00:22 | 文件大小: 369KB | 文件类型: ZIP
matlab精度检验代码ML_Heart_Disease_Project 内容 先决条件 Matlab版本2018a 统计和机器学习工具箱 神经网络工具箱 可以使用以下内容,但如果不存在,则将其跳过: 并行计算工具箱(用于优化设备的随机森林计算) 深度学习工具箱(需要绘制混淆图) 资料夹 load_heart_csv.m 从当前目录加载包含名为heart.csv的心脏数据的数据文件,并将数据拆分为训练集和测试集,返回训练集和测试集以及cvpartition对象的标签和功能。 该脚本修复了随机种子,因此交叉验证分区以及测试和训练数据的划分是确定性的,以允许可重复性。 探索性数据分析(EDA文件夹) boxpolts.m 生成用于分类预测变量特征的箱线图和显示分类数据频率值的条形图 EDA.ipynb 对数据执行基本的探索性分析,并生成要素之间相关性的热图。 NB调整文件夹 Run_NB_Analysis.m 这是在朴素贝叶斯模型上运行实验的顶级脚本。 该脚本运行贝叶斯优化和网格搜索,以测试正态分布和内核分布并优化所有功能上的内核宽度。 还运行手动网格搜索,其中对连续要素尝试了分布的所有组

文件下载

资源详情

[{"title":"( 33 个子文件 369KB ) matlab精度检验代码-ML_Heart_Disease_Project:ML_Heart_Disease_Project","children":[{"title":"ML_Heart_Disease_Project-master","children":[{"title":".gitignore <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 6.15KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"devicespec.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"get_performance.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"Data","children":[{"title":"heart.csv <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false},{"title":"load_heart_csv.m <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"Archive","children":[{"title":"myCVlossfcn_F1.m <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"loadheart.m <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"Optimisation.m <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"myCVlossfcn_nbce.m <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"myCVlossfcn.m <span style='color:#111;'> 508B </span>","children":null,"spread":false},{"title":"NB_BayesOpt_CE.m <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"myCVlossfcn_grid.m <span style='color:#111;'> 472B </span>","children":null,"spread":false},{"title":"RF_PredImp_3_2018_10_10_male_female_comparison.m <span style='color:#111;'> 4.94KB </span>","children":null,"spread":false},{"title":"RF_2_2018_10_04.m <span style='color:#111;'> 13.10KB </span>","children":null,"spread":false},{"title":"parameter_tuning.m <span style='color:#111;'> 9.17KB </span>","children":null,"spread":false},{"title":"Naive_Bayes.m <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"gs_results.csv <span style='color:#111;'> 2.63KB </span>","children":null,"spread":false},{"title":"RF_4_2018_11_08.m <span style='color:#111;'> 9.07KB </span>","children":null,"spread":false}],"spread":false},{"title":"fitcnb_ce","children":[{"title":"fitcnb_ce.m <span style='color:#111;'> 14.92KB </span>","children":null,"spread":false},{"title":"parseFitoptimizingArgs_2018a_version.m <span style='color:#111;'> 6.48KB </span>","children":null,"spread":false},{"title":"createObjFcn_ce.m <span style='color:#111;'> 5.57KB </span>","children":null,"spread":false},{"title":"fitoptimizing_ce.m <span style='color:#111;'> 6.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"RF_Tuning","children":[{"title":"lossFcn_RF_CE.m <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"lossFcn_RF_MCR.m <span style='color:#111;'> 541B </span>","children":null,"spread":false},{"title":"feature_selection.m <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"loss_function_comparison.m <span style='color:#111;'> 14.12KB </span>","children":null,"spread":false}],"spread":true},{"title":"Model_Comparison","children":[{"title":"Model_Comparison.m <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"NB_Tuning","children":[{"title":"Run_NB_Analysis.m <span style='color:#111;'> 6.57KB </span>","children":null,"spread":false},{"title":"Naive_Bayes_man_gs.m <span style='color:#111;'> 4.41KB </span>","children":null,"spread":false},{"title":"Naive_Bayes_optimisation.m <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"EDA","children":[{"title":"EDA.ipynb <span style='color:#111;'> 643.95KB </span>","children":null,"spread":false},{"title":"feature_plots.m <span style='color:#111;'> 7.94KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明