上传者: 38722329
|
上传时间: 2025-08-20 09:33:50
|
文件大小: 3.06MB
|
文件类型: PDF
现有的因果发现算法通常在高维数据上不够有效。 因为高维降低了发现的准确性并增加了计算复杂性。 为了缓解这些问题,我们提出了一种三相方法,以利用特征选择方法和两种最先进的因果发现方法来学习非线性因果模型的结构。 在第一阶段,采用基于最大相关度和最小冗余度的贪婪搜索方法来发现候选因果集,并据此生成因果网络的粗略骨架。 在第二阶段,探索基于约束的方法以从粗糙骨架中发现准确的骨架。 在第三阶段,进行方向学习算法IGCI,以将因果关系的方向与准确的骨架区分开。 实验结果表明,所提出的方法既有效又可扩展,特别是在高维数据上有有趣的发现。